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Chapter 1

Project Description

The work is motivated by the following experience, related to the PI:
I was looking over a large body of water with land on the other side. The sky was
cloudless and blue. Suddenly, I was aware of a flash of a straight line in the upper
right of my visual field. When I shifted my gaze to that point, I realized a bird had
momentarily flown in such a way as to create a straight line between a water tower
and a tree.

This simple experience illustrates several aspects of the perception of straight lines. First, collinear-
ity can be detected in non-foveal areas of the visual field; the observer was not looking at the bird
until after his attention was shifted. Second, since directed attention was not on the area of the
visual field containing the line, this suggests an operation performed by “hardware” in the visual
cortex. Third, this is an unusual phenomenon, it was attention-diverting because the background
was so extremely uncluttered, arguing for a system that is sensitive to background clutter.
In later sections of this report, we will refer back to this experience.
In this work, we have sought a biologically-plausible computing architecture which can identify
simple features such as straight lines in images. We sought an architecture which will detect these
features over very wide expanses of the visual field, not restricted to the fovea or a local receptive
field. We sought answers to the following questions:

• whether mammals have “hardware” for straight line detection,

• what the nature of such hardware is, given that only low precision calculations are available,

• how to detect and quantify such functions in the visual cortex, and

• how to build an electronic real-time version.

We have concluded that a computing architecture based on straightforward image analysis opera-
tions provides Straight Line Detection (SLD) consistent with human behavior.
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Chapter 2

Objectives

In chapter 4.2 we will present a neural architecture which is reasonable to describe the high-speed
SLD experience described above. We have simulated this architecture, and tested its performance.
We will then describe future work performing comparisons with carefully conducted human behavior
experiments to confirm that our proposed and simulated architecture is a reasonable explanation
for how human detect straight lines.
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Figure 2.1: A Gabor filter combines derivative of a Gaussian with sinusoidal modulation. The
sensitivity of the edge detection neurons is consistent with a Gabor filter. The filter shown in this
figure produces an estimate of the first derivative of a brightness edge.
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Chapter 3

Technical Background

Since the work of Hubel and Wiesel, (now collected into a book [38]), it has been possible to
represent the lower levels of the biological vision system by a convolution with a collection of edge-
sensitive kernels. For example, we know by experiment that corresponding to every point in the
retina, there are cells which are sensitive to edges/lines with varying orientation.
The output of these cells may be simulated by convolution with an oriented kernel such as a Gabor
filter. These feature detectors are known as Simple cells at layer 1 or just S1 cells.

3.1 The Standard Model

The standard model for vision has been developed in a variety of versions over a number of years
by Tomaso Poggio and colleagues. This particular model for vision has always been very careful
to avoid using any architectural components that could not be found in a biological brain, and to
substantiate any models with actual neural recordings in so far as possible. We follow the same
philosophy in this work.
A thorough explanation of the Standard Model is provided in [57]. The model begins with area V1
of the visual cortex. From many neurophysiological experiments, V1 is known to be mapped in a
retinotropic way (neurons close to each other in V1 correspond to areas in the visual field which
are likewise close to each other). The details of processing done by ganglion cells in the retina, the
optic nerve, and the lateral geniculate nucleus (LGN) are lumped into the observation that there
are cells in V1 which are sensitive to edges in the image. Different cells are sensitive to edges with
different orientations. There seem to be about 4 preferred orientations, horizontal, vertical, and the
two 45-degree slanted edges. The output of these cells is consistent with convolution of the image
with a Gabor filter (See Figure 2.1)with that specific orientation. The convolution operation may
be implemented in simulation by

y = g

 ∑n
j=1wjx

p
j

k +
(∑n

j=1 x
q
j

)τ
 , (3.1)

where the wj are the weights corresponding to the filter, the xj are the inputs from the LGN, and
g is the sigmoid function commonly associated with neural response functions. Refer to [57] for
details.
The outputs of the S1 cells are inputs to C1 cells, which have larger receptive fields, and which per-
form a maximum operation over a local neighborhood. By selecting the output from the strongest
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Figure 3.1: LEFT When a straight or gently curving line is occluded, the human visual system
infers the existence of the occluded portions of the line. This occurs even when the space between
the collinear segments is significantly larger than the observation area of the fovea. RIGHT:A line
in the image is parameterized by its distance from the origin (ρ), and the angle it makes with the
x axis (θ). Any point on that line may be described using polar coordinates r and α.

S1 cell, and effectively suppressing the others, a small degree of translational invariance is provided,
coupled with a more accurate positioning of actual edges. This is similar to the function of the
Canny[17] edge operator, which uses nonmaximum suppression to locate the maximum of local
edge detector responses. Biologically-plausible implementations of the maximum operation may be
described by the “softmax” operation [57] satisfying the equation

y = g

( ∑n
j=1 x

q+1
j

k +
∑n

j=1 x
q
j

)
. (3.2)

The maximum operation is also computable using a locally-connected network of neurons using
inhibition to implement winner-take-all.
Thus, after the first S1/C1 pair, edges with specific orientations are identified with considerable
precision. This will become the input to our SLD network. In [57], additional levels of S- and C-like
cells are proposed at higher levels of the brain, with increasing size and generality, and shown to
provide a feedforward network that can explain foveal shape recognition. However, the S1-C1 level
is all that is required for the SLD operation described in this work.

3.2 The log-polar map

In 1977, Eric Schwartz [55] published his seminal paper illustrating the “log-polar transform”. This
transform, denoted L : C→ C describes the image plane by an isomorphism to the complex plane,
so that a point with coordinates (x, y) in the image is represented by the single complex variable
z. Similarly, a point in the cortical plane is represented by w ∈ C, and the log polar mapping is

w = ln(z) (3.3)
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This representation is shown to be consistent with a substantial body of neurophysiological liter-
ature, and several advantages result from this representation. For example, scale change in the
image is converted to a simple translation on the cortex.
The complex number w in magnitude, direction form is denoted w = (ρ, θ), where

ρ = log
√
x2 + y2

θ = arctan y
x

Figure 3.2: Log Polar Transformation

ρ is hence the logarithm of the distance to a given point from the origin and θ is the angle between
the axis and the line joining the given point and the origin. In image processing applications, the
mapping aids in data reduction by reducing the resolution at image boundaries. The transform is
also widely used in applications like image registration, tracking and target recognition.
In Appendix B, the transform is explained in more detail. This analysis was provided by the
graduate student supported on this grant, but independent of the grant itself.
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Chapter 4

An Architecture for Non-local Vision

A line, or collection of nearly collinear line segments, in an image may be detected by the well-known
Hough transform (HT) [36].
The HT is a type of accumulator method, and since the original paper, many variations and ex-
tensions have been made [7, 19], which follow the Hough philosophy of using accumulation to
determine consistency. Some of these methods are based on neural models [12, 13, 8, 9, 10, 11]. In
this presentation, we discuss only the original straight-line version.
Accumulator methods allow consistent but spatially diverse image segments to “vote” for consistent
interpretations. Because the voting is an addition, zero mean noise is averaged out. The HT
methods have been shown [33, 16] to provide highly robust ways to combine local measurements
to make global decisions.

1. The method collects input from spatially diverse features in the image and increments a
single point/neighborhood in the transform image1. Thus, non-connected but almost-collinear
features in the image all enhance the same point in the transform space. This produces a
means for dealing simply with occlusion. Figure 3.1 shows an example in which the human
extrapolates, and infers the presence of straight lines.

2. The accumulation process is simply additions. The method is therefore robust to most addi-
tive noise, since positive and negative noise cancels out.

3. Features which are identical (e.g. straight lines) but located in different points in the image
transform to different points in the transform space.

We have observed that the advantages of accumulator-based methods are quite significant, and in
this work we insisted on finding methods to use them in a biologically-plausible network, though
there may be alternatives. For example, Basak [8] develops a method for finding straight lines in
images, however, no accumulators are used (although the title of the paper includes the words Hough
Transform). Instead, a search is made for a collection of weight vectors, each vector representing
a straight line. Neural nets methods (weight vector estimation) are used in an iterative algorithm
which requires that the maximum allowable number of vectors be known a-priori. In contrast, in
this work, we made extensive use of accumulators.
Here, we consider only straight lines, although we have done considerable research in the use
of accumulator-based techniques in detecting general shapes[41, 42]. In Figure 3.1(RIGHT) is

1Since the transform is implemented using a 2-D array, we will use the word image.

11



...

C

1

2

3

4

n

C

C
C

C

Aρ
1
θ
1

ACCUMULATOR

ρ
2
θ
2

A

O
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accumulator cell characterizing the edge. In this figure, two edges are illustrated, with orientations
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Figure 4.2: An image which is the output from an edge detector. The human can immediately
discern that this boundary consists of two straight segments.

illustrated a straight line parameterized by its distance from the origin and the angle, φ, it makes
with the horizontal axis.

4.1 Background: the Hough Transform

Suppose one is tasked with the problem of finding the straight lines in the image shown in Figure
4.2. If only one straight line were present in the image, we could use straight line fitting to determine
the parameters of the curve.
We could represent lines by equations of the form

y = ax+ b (4.1)

But we have two line segments here. If we could segment this first, then we could fit each segment
separately – yes, this is a segmentation problem – but we are segmenting a boundary into boundary
segments rather than segmenting an image into regions. In this section, we will learn how to do
this.
First, let us prove an illustrative theorem.
Definition: given a point in a d-space, and a parametrized expression defining a curve in that
space, the parametric transform of that point is the curve which results from treating the point
as a constant and the parameters as variables. For example, Eq. 4.1 produces the parametric
transform

b = y − xa (4.2)

13



which is itself a straight line in the 2-space < a, b >. Given the point x = 3, y = 5, then the
parametric transform is b = 5− 3a.
Theorem: If n points in a 2-space are collinear, all the parametric transforms corresponding to
those points, using the form b = y − xa intersect at a common point in the space < a, b >.
Proof: Suppose n points {x1, y1), (x2, y2), , , (xn, yn} all satisfy the same equation

y = a0x+ b0 (4.3)

Consider two of those points, (xi, yi) and (xj , yj) . The parametric transforms of the points
are the curves (which happen to be straight lines)

yi = xia+ b (4.4)
yj = xja+ b (4.5)

(4.6)

which we rewrite to make clear the fact that a and b are independent variables

b = yi − xia (4.7)
b = yj − xja (4.8)

The intersection of those two curves, straight lines in a, b is a single point.
Solving the two equations of Eq. 4.8 simultaneously results in

yi − yj = (xi − xj)a (4.9)

and therefore a = yi−yj

xi−xj
.

We substitute a into Eq. 4.6 to find b,

b = yi − xi
yi − yj
xi − xj

(4.10)

and we have the a and b values where the two curves intersect. However, we also know from Eq.
4.3 that all the xs and ys satisfy the same curve. By performing that substitution into Eq. 4.10,
we obtain

b = (a0xi + b0)− xi
((a0xj − b0)− (a0xi + b0))

xi − xj
(4.11)

which simplifies to
b = (a0xi + b0)− xia0 = b0 (4.12)

Similarly,

a =
yi − yj
xi − xj

=
(a0xi + b0)− (a0xj + b0)

xi − xj
= a0 (4.13)

Thus, for any two points along the straight line parameterized by a0 and b0, their parametric
transforms intersect at the point a = a0 and b = b0. Since the transforms of any two points
transforms intersect at that one point, all such transforms intersect at that common point. QED.
Review of concept: Each POINT in the image produces a CURVE (possibly straight) in the pa-
rameter space. If the points all lie on a straight line in the image, the corresponding curves will
intersect at a common point in parameter space.
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The Problem with Vertical Lines In order to deal with vertical lines, in which the slope, a, is infinite,
we choose a different form for the straight line

ρ = x cos θ + y sin θ (4.14)

For a given pair of values for ρ and θ, the set of points which satisfy Eq. 4.14 can be shown to be
a straight line.
This representation of a straight line has a number of advantages. Unlike the use of the slope, both
of these parameters are bounded; ρ can be no larger than the largest diagonal of the image, and
θ need be no larger than 2π. A line at any angle may be represented without singularity. The
use of this parameterization of a straight line solves one of the problems which confronts us, the
possibility of infinite slopes. The other problem is the calculation of intersections.
How to Find Intersections – Accumulator Arrays
It is not feasible to find all intersections of all curves, and to then determine which of those are close
together. Instead, we make use of the concept of an accumulator array. To create an accumulator
array, we make an image, say 360 columns by 512 rows. We initialize each of the pixels to zero.
From now on, we will refer to the pixels of this special image as accumulators. Figure 4.4 illustrates
plotting two straight lines through an accumulator array using the following algorithm:

• For each point (xi, yi) in the edge image, do

1. for all values of θ compute ρ.

2. at the point ρ, θ in the accumulator array, increase the value at that point by an amount
proportional to the strength of the edge.

This algorithm results in multiple increments of those accumulators corresponding to intersections
being increased more often. Thus the peaks in the accumulator array correspond to multiple
intersections, and hence to proper parameter choices.

Figure 4.3: Two very noisy lines.
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Figure 4.4: The Hough Transform of figure 4.3

In this work, we do not use the Hough trans-
form as described in this subsection (except for
test validation), however, we do make use of ac-
cumulators to find consistent contributions to
collinear segments.

4.2 The Architecture

There are two arrays of interest, the image
and the accumulator. The image is defined by
the output of C1 cells, and denoted C1(x, y, θ).
The spatial coordinates of the C1 cell could be
Cartesian (x, y) or polar (r, φ). In the proposed system, either may be used, but we choose Cartesian
simply because it is easier for humans to visualize. We choose to use the output of C1 cells because
those cells reflect the results of two lower-level stages of processing, convolution and softmax. The
convolution is performed by S1 cells as described in section 3.1, and similarly, the C1 cells provide
a degree of invariance to small rotations and translations, also as described in section 3.1. The
third parameter of the image function, θ (see figure 3.1) is an encoding of the orientation of the
angle passing through the receptive field. We discuss how this encoding is developed elsewhere in
this document.
Each cell A(ρ, θ), A : < × (0, 2π] → < in the accumulator array A may represent a line or an edge
in the image. For this initial work, we limit the exploration to detecting lines. The variable θ is
the same θ as mentioned in the previous paragraph, and parameterizes the slope of the edge. As
in Figure 4.1, ρ is the minimum distance of this edge to the foveola2.
The accumulation function used here relies on a critical observation: At any point in C1, both the
spatial coordinates, and the orientation of the edge are known, therefore the edge is
uniquely determined. For this reason, only one3 afferent connection is required from a C1 cell in
V1, C1(x, y, θ), to a cell in the accumulator, A(ρ, θ), as illustrated in Figure 4.1. The accumulator
may be considered as a two dimensional array indexed by θ and ρ. It is straightforward to show
that for any point x, y on the line,

ρ = (x cos θ + y sin θ) (4.15)

The accumulator cells have as many efferents as there are C1 cells in the corresponding edge, which
could be on the order of a thousand, still a reasonable biological assumption.
Here, we represent a straight line by a finite set of points (r, θ). The set of points constituting line Z is defined by

A(ρ, θ) = {r, θ| |ρ− r cos θ − r sin θ| < δ} (4.16)

where δ is some “small” positive constant. Thus, the accumulator cell with parameters (ρ, φ) has
a value equal to

Aρ,θ =
n∑
i

C1i (4.17)

2Although the foveola, the center of the fovea, has a non-infinitesimal area, it is quite small, and the term is used
here to denote the center of the foveola, the origin of the coordinate system

3One connection is not robust, however, and this is addressed in section 5.2
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where i simply denotes a cell on the line ρ, θ. The fact that the orientation returned by edge
detectors is the same as the parameter used by the transform potentially provides for the simple
interconnection architecture mentioned above.
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Chapter 5

Approach

In this section, we describe topics addressed in the initial (STIR) phase of the project, and topics
likely to be addressed in the second, follow-on, phase of the project. In this way, the reader may
see the entire scope of the effort.
In this, the “Approach” section, we will describe experiments run and also the results of those
experiments.

5.1 Estimating Orientations

Schoups et al. [51] indicate that there is no particularly preferred orientation in the visual field
of monkeys. Using a fixed, small number of Gabor-like filters suggests a reasonable biological
implementation, just a few orientation-sensitive cells at every point. Yet, we must ask, if we only
make, say, four independent measurements of orientation, and each one is accurate only to, say,
one part in thirty (five bits precision), how can eight-bit precision occur, as has been measured in
primates[51]? In Appendix A, we show how four measurements of the orientation of a particular
edge can be used to produce an accurate estimate of the actual orientation. However, though
that appendix demonstrates that a linear machine can determine a single estimate from the four
measurements, it does not consider in detail how a biological collection of cells could perform this
operation.
In this phase of the research, we have examined the method described in the appendix, as well as
a number of other methods to validate how well they work on long and short line segments and
how tolerant they are to errors in the original measurements. In this phase, we also determine the
best way to use a set of measurements directly to select the cells or cell neighborhood in A to be
accumulated. In Figure 5.1, we illustrate the result of a simulation using multiple neurons with
only a few bits of precision. By exploiting consistency (as determined by the accumulator), high
precision results can be obtained from these low precision calculations.
In the following subsections, we explore a variety of options for estimating the orientation of an
edge from a limited number of measurements. We assume n measurements of orientation have been
made, and we wish to find a best estimate of the actual orientation. The interpolation is to be
accurate over a range of 0 to π which has been quantized into m possible angles. For convenience,
we choose m to be 180, so that a change of ∆θ = π/180 corresponds to one degree.
Typically, we might make 6 measurements using the Gabor filters, and interpolate those 6 mea-
surements to an accuracy of one degree.
In the following explanatory sections, we will use one of the simple inputs shown below:
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We experimented with a number of ways in increment the accumulator based on a set of directional
measurements. These are described below:

5.1.1 Estimating Orientation Using the Traditional Hough Transform (mode 0)

Mode 0 is the classical Hough Transform (HT). At each point, the entire accumulator is incremented.
First, the maximum strength of the response is tested, and if it is significant, a plot of the curve
ρ = x cos θ + y sin θ is generated by allowing θ to range over permissible values. We implemented
this method only because it provides a reference to a well-known method. Interestingly, we found
the Hough Transform to not only be slower, but less accurate than other methods, probably due
to the fact that peaks in the transform space tend to not be symmetric. Experimentally, it works
well, but other estimators are faster, and the HT does not meet the requirement to be biologically
plausible. Figure 5.3 illustrates the accumulator produced by the classical HT, and the image
reconstructed.

5.1.2 Estimating Orientation By Interpolation (mode 1)

This mode uses the n measurements of directional derivative magnitude and then linearly inter-
polates them over a total of 180 1-degree measurements. Figure 5.4 illustrates the results on the
test image. Unfortunately, this method seldom works, probably due to the idea that the true angle
may be derived from a single linear interpolation is simply false. This method may be compared
with mode 5, which uses a parabolic interpolator and works very well.

5.1.3 Estimating Orientation Using the Pseudo-inverse (mode 2)

In Appendix A, we illustrate how a gradient vector may be estimated from 4 noisy estimates. It is
straightforward to extend this to a larger number of estimates than 4, and we did so.
A single noisy gradient vector, projected onto all four directions produces four (or n in the general
case) noisy measurements. The method then returns the original vector quite precisely. However,
if the n measurements are not simply projections (as the Gabor does not return strict projections),
the estimated value may be quite imprecise. We ended up unable to use this method for n > 4.
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5.1.4 Estimating Orientation Using the maximum Gabor Output (mode 3)

At each point, a number, n of filters have been applied. The largest response is chosen as the
correct angle. The problem with this approach is illustrated in figure 5.2 which shows a single line
which has been sampled by a collection of filters several times. The line subtends an angle of 30
degrees with the x axis. Assuming there are four Gabor filters (0, 45o, 90o, 135o). In each case, the
45o filter will have the strongest output. However, if no interpolation is done, those four responses
will not align. Figure 5.5 illustrates the nearly perfect results on the test image.

5.1.5 Estimating Orientation by Incrementing all the Directions (mode 4)

Because all n directions are incremented, a significant amount of blur allows a successful detection.
This mode is attractive because no interpolation is needed at all, except for the natural sum-
ming of the measurements. Furthermore, this is the mode originally envisioned in the proposal.
Surprisingly, it also has the best performance. Figure 5.6 illustrates the results on the test image.

5.1.6 Estimating Orientation by Fitting a Parabola (mode 5)

First, find the maximum response from the n. Let that angle be denoted θ2 and the filter output
at that point be y2. Let the angle measurement on the left be θ1 with output y1 and similarly the
point on the right be θ3, y3.
Let the distance (in degrees) be γ, and move the origin to allow θ2 be zero. A parabola which
passes through these 3 points satisfies

y1 = a(−γ)2 − bγ + c (5.1)
y2 = c (5.2)
y3 = a(γ)2 + bγ + c (5.3)

This system of equations is satisfied by

c = y2 (5.4)
b = (y3 − y1)/2γ (5.5)

a =
y3 − bγ − c

γ2
(5.6)

Then, the location of the strongest response is found by differentiating the parabola and setting
the result to zero producing

θ̂ = −b/2a (5.7)

This approach can only fail in the degenerate case that all 3 y’s are the same. In that case, the
estimated direction is simply that of θ2.
Numerous experiments confirm this approach works best. The only problem is the division of
equation 5.7 is challenging to motivate in a biological network. Figure 5.7 illustrates the results on
the test image;

5.1.7 Estimating Orientation by Linearly Interpolating the Strongest Two Di-
rections (mode 6)

One other approach is to choose only two measurements, the one having the strongest response, and
one of its neighbors, and performing a linear interpolation. This approach does not work because
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this would require that the interpolation be less than the already-measured maximum. Figure 5.8
illustrates the results on the test image.

5.2 Accumulation

A single connection from the image plane to the accumulator raises the possibility that several
nearby points in the accumulator may be each individually incremented, without one particular
point emerging as the clear representative. In the traditional Hough transform, this is most fre-
quently dealt with by blurring the accumulator.
In the traditional Hough transform, however, the accumulation of points near a peak becomes
problematic because the distribution of points is not isotropic. Figure 4.4 illustrates a traditional
Hough Transform with distinct peaks. Even though the peaks are distinct, near the peaks the
distribution is strongly non-isotropic, and a large-scale smoothing model will not be appropriate.
We attempted to solve the problem of finding the peak by inventing a new clustering algorithm
which we called BlackHole. In this approach, each nonzero point in the accumulator represents
a particle in free space with a mass equal to its brightness, and moving in response to the net
gravitational field of all the points. Gradually, the points all collapse into a single very bright spot
which will be the cluster center.
Since this effort was a bit of a diversion from the main emphasis of this project, we allocated
only one person-week to it. Unfortunately, the problem turned out to have a number of subtle
details, was in general more complex than we had anticipated, and after one person-week, we had
to abandon the effort before it yielded a solution. Fortunately, modes 3 - 5 yield tight, dense
clusters which are relatively round. We found that simple, small area blurring, followed by local
maximum detection was sufficient for modes 3, 4, and 5.
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Figure 5.1: Graphs show average precision (measured in radians) in determining the orientation
of a straight line, as a function of the number of bits of accuracy used in the estimate. From top
to bottom, the curves illustrate the effects of having 2, 3, 5, and 10 points along that line. It
is clear that more than ten points do not increase the precision. The parameters are determined
by choosing points roughly along the line (“rough” is determined by the bits of precision), and
then measuring the ρ, φ parameters of the line. These parameters are also computed only to the
precision of the bits specified along the horizontal axis. Since the possible range was π, an accuracy
of 0.01 at 5 bits is equivalent to one part in 300, or over eight bits of precision.

Figure 5.2: If the orientation resolution is too small (an insufficient number of directional filters is
used), the sampled points will not be collinear
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Figure 5.3: (MODE 0) LEFT:Accumulator resulting from finding lines in the test image, using the
traditional Hough Transform. RIGHT: The image reconstructed from the accumulator. Note that
the output image (512×512) is larger than the input image (256×256), so the reconstructed image
shows the edges in the upper left quadrant.

Figure 5.4: (MODE 1) LEFT:Accumulator resulting from finding lines in the test image, using
mode 1, which does not work. RIGHT: The image reconstructed from the accumulator.
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Figure 5.5: (MODE 3) LEFT:Accumulator resulting from finding lines in the test image, using
mode 3, which works well. RIGHT: The image reconstructed from the accumulator. Note that the
output image (512 × 512) is larger than the input image (256 × 256), so the reconstructed image
shows the edges in the upper left quadrant.

Figure 5.6: (MODE 4) LEFT:Accumulator resulting from finding lines in the test image, using
mode 4, which works well. RIGHT: The image reconstructed from the accumulator. Note that the
output image (512 × 512) is larger than the input image (256 × 256), so the reconstructed image
shows the edges in the upper left quadrant.
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Figure 5.7: (MODE 5) LEFT:Accumulator resulting from finding lines in the test image, using
mode 5, which works well. RIGHT: The image reconstructed from the accumulator. Note that the
output image (512 × 512) is larger than the input image (256 × 256), so the reconstructed image
shows the edges in the upper left quadrant.

Figure 5.8: (MODE 6) LEFT:Accumulator resulting from finding lines in the test image, using
mode 6, which does not work well. RIGHT: The image reconstructed from the accumulator. Note
that the output image (512× 512) is larger than the input image (256× 256), so the reconstructed
image shows the edges in the upper left quadrant.
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Chapter 6

Results

Figure 6.1 illustrates the type of image we used for testing. Instead of natural images, we used this
class of test images because it is possible to carefully control the parameters of interest. The reader
should look at the first image and identify the most distinctive straight line in that image. Most
human observers choose the straight line at an angle of −45o to the x-axis in the lower right. That
line consists of five microlines. However, there are also two other lines of interest in this image, a
horizontal line at the upper left , and another horizontal line about 1/3 of the way down. Although
both of those macrolines are only of length 2, nonetheless, they are collinear segments, and we
would expect a program which models human behavior to detect them.
This experiment was motivated by previous work in neural modeling [67, 59, 30], using similar test
images. Gintautas et al. state “we employ abstract computer-generated shapes consisting of short,
smooth contour segments that could either be globally aligned to form wiggly, nearly closed objects
(amoebas, or else randomly rotated to provide a background of locally indistinguishable contour
fragments (clutter).” In our case, we seek not amoebas but lines, but the philosophy is identical.
By using test images like this, we can control a variety of parameters such as:

length Here, the term length refers to the length of the macroline. It is the total number of
microlines which make up the macroline. For example, the length of the 45o macroline
referred to above is 5.

Microline orientation A macroline consists of one or more microlines, and each microline has
an orientation. The value orientation is actually the variance of the orientation of the micro-
lines which make up a single macroline. Performance as a function of variance of microline
orientation is discussed in section 6.5.3.

We have tested the peak detection algorithm extensively, and will show performance results later
in this section. First, we discuss the nature of the data and the experiments.

6.1 The Experiments

Using modes 3, 4, and 5, we process this image, find the accumulator, and reconstruct the ac-
cumulator to produce Figures 6.2 - 6.4. The brightness of the line in the reconstructed image is
proportional to the confidence the algorithm has in the detection.
We then repeat this experiment using the second image. Remember, these two images differ only
in the small random perturbation applied to the diagonal line. Interestingly, all three methods
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Figure 6.1: Two similar images from the set of test images. The 45o line in the lower right of the
left image is deformed by a 5o random variation to form the image on the right. Note, on some
computer screens, lines may disappear due to the coarse sampling required to show both images
on the same page of the report. Also note that aliasing effects occur in these images which were
corrected as illustrated in Figure 8.1

fail to identify the diagonal line as having high likelihood. We have run experiments1 with humans
and found a similar result, although humans will sometimes identify the dark region around the
diagonal line as a collinear segment. Even small variations away from collinearity caused significant
changes in the human’s sensitivity to lines.

6.2 Detection as a Function of Length

Figure 6.8 illustrates the probability of correct detection as a function of length of the macroline.
This figure is an average over a variety of values for variation in microline orientation and macroline
orientation.

6.3 Detection as a Function of Microline Orientation

Figure 6.9 shows the probability as a function of variance in the orientation of the microlines. It
is particularly interesting to compare the performance of the method with the performance of a
human in this context. For example, note the two images in Figure 6.1 differ only by the random
variation of the microlines in the single 45o line, and that variance is only five degrees. Yet, when
the simulation is run on the left image, the 45o line is perceived as the most distinctive, but when
it is run on the right image, the horizontal line near the center of the image replaces the 45o line
as the most distinctive. Several humans that we polled agree with this distinction, suggesting that
the model is consistent with human behavior.

1The results of these experiments can only be classified as anecdotal, as they were performed without an expert
in human cognitive psychology to design them.
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Figure 6.2: The first test image processed with mode 3.
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Figure 6.3: The first test image processed with mode 4.
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Figure 6.4: The first test image processed with mode 5.
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Figure 6.5: The second test image processed with mode 3.
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Figure 6.6: The second test image processed with mode 4.
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Figure 6.7: The second test image processed with mode 5.
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Figure 6.8: Detection probability of macrolines as a function of length. The performance is lim-
ited by random variation in orientation of microlines. See discussion in text. In this image, all
background clutter was the same intensity as the target line.

This may be compared with the work of Gintautas et al., [30] who work with “amoebas” which
are, by design, figures in which local microlines (our terminology) are very closely aligned. Lack of
local alignment should produce a negative decision.
It is reasonably easy to see why the collinearity requirement is so sensitive. Imagine two short,
nonparallel line segments one with orientation, say 53 degrees and the other 47 degrees. Suppose
their centers both lie on the same 50o line. Even though they are both have orientations close
to that of the line on which they lie, when one extends the segments, we see that they are really
quite different lines. The transform-based detection method we use does not distinguish distance
between the line segments, so they are not considered part of the same line. It is clear from
other experiments, that the human follows a curve, if the segments are touching or very close, but
apparently not if the segments are not connected as in this case.

6.4 Detection as a Function of Clutter

Not surprisingly, if the background clutter is reduced, the probability of correct detection of the
true macroline increases. This is illustrated in Figure 6.10.

6.5 Comparison with human experiments

In this section, the results from SLDSimulation are compared with results from [26] and [35].
Contour detection experiments with ‘yes’ and ‘no’ responses were conducted on human subjects in
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Figure 6.9: Detection probability of macrolines as a function of variance in the orientation of the
microline.

35



Figure 6.10: Detection probability as a function of length for a low signal-to-clutter ratio image.
Here, the average brightness of a true positive pixel is double that of a clutter pixel. Compare
with Figure 6.8 in which the clutter and signal are the same brightness. This is consistent with the
observation at the beginning of the report that even very subtle lines may alert the line-detecting
portion of the brain if the clutter is very low.
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[26] and [35].

6.5.1 Similarities in experimental parameters

Here, we use the terms “microline” and “macroline” to distinguish between the short, sometimes
collinear segments in the test images and the long line perceived as made from the shorter microlines.
The image size used in the current set of experiments is 512 x 512, and the image is divided into
squares of size 32 x 32. Every microline was constrained to fall within a square. The straight line
was constructed first, and then the empty squares were filled up with microlines. These parameters
are similar to those of [26], and comparable to those of [35].

6.5.2 Differences in experimental parameters

Experiments outlined in [26] and [35] involve detection of contours, while we are interested in
detection of straight lines. Line segments were used in place of Gabor elements. The position of
each microline was constrained to fall within a square, and the position within the square varied
in Gaussian manner (with high probability of the microline falling in the center of the square),
as opposed to uniform distribution commonly reported in literature. Path angle remains zero
throughout, as we are interested in straight lines. It varies from element to element in the papers.
Human subjects are asked “do you see a curve (or line) at all?” We ask our algorithm, ”What is
the orientation of the dominant line you see (if you see one)?”

6.5.3 Results Compared with Human Performance in Literature

Figure 6.11 shows the relation between variance in microline orientation along a curve as observed by
humans. The microline orientation is varied randomly in a Gaussian manner. For our experiments,
we consider only straight lines, and these correspond the zero angle case. (y axis of figure). It can
be seen that for the zero degree case, as the variation increase from 0 degrees to 30 degrees, the
percentage of correct detection by humans decreases from 100% to around 80% at 15 degrees, and
to almost 50% at 30 degrees.The same trend is shown by SLDSimulation, except that we did not
ask the algorithm “do you see a curve at all?”

Figure 6.11: Results from experiment 4 of [26].

The set of results in Figure 6.13 are from [35]. Positional sigma refers to the sigma of the 2D Gaus-
sian determining the position of the microlines along the path of the straight line, but constrained
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Figure 6.12: Red: results from Field et al. showing probability of detection as a function of variance
in microline orientation. Blue: SLDS Simulation results.

to lie within a square. We are primarily interested in the lower left figure (unfilled circles) which
reports five degree path angle contours. Hess and Dakin [35] do not report zero degree behavior,
so 5 degrees is as close as available for comparison.
Figure 6.14 compares our results for straight lines with [35] at 5 degrees.
The experiments whose results are in Fig. 6.15 are similar to those in figure 6.11 but compare
different parameters.
Orientation sigma refers to the sigma of the Gaussian distributed variation of microline orientation
from the straight line path. The difference once again is in the path angle, which has been set to
zero degrees in Fig. 6.16. The result is hence most close to foveal detection of a five degree path.
Note that Figure 6.16 includes not only our results in blue but a restatement of the results from
Hess [35]. If the length of the straight line had been set to 8 microlines, as is the case in [35], we
would have obtained a 100% detection for the straight line by SLDSimulation. Reducing the line
length to 6 affected the detection rate, and reduced it for higher sigma in the orientation variation
value. Further reduction in the line length would lead to even more rapid deterioration in detection
rate.
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Figure 6.13: Positional Sigma results from [35].

Figure 6.14: Positional Sigma comparable results.

39



Figure 6.15: Orientation Sigma results from [35].

Figure 6.16: Orientation Sigma comparable results.
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Chapter 7

Future Work

7.1 Correlation with Human Behavior

Our experiments in comparing human perception and simulation results can only be called “anec-
dotal,” since we do not have the skill or facilities to design, set up, and execute experiments with
humans. We need to present a human with a set of experiments similar to those described in section
6.1 and compare the results.
Further work on this project will require human experiments with an expert in human cognitive
psychology. Unfortunately, there do not seem to be psychologists near NCSU who have interest or
time; e.g. we located one expert at Duke University who has the skills and facilities, but he has
just received significant miliary funding and will not be available for approximately two years. He
suggested some other psychologists in other states who have the requisite skills. However, if we
cannot identify a local collaborator, and must communicate long-distance, we might as well use
people we know.
We have had a collaboration with Dr. David Badcock at the University of Western Australia
who could bring to the project an expert-level understanding of both Computer Vision and neu-
rophysiology of vision, while practicing as a cognitive psychologist with a huge experience base in
experimental design. Unfortunately, travel to or from Australia would be expensive. It might be
possible to perform these experiments without travel. This remains to be investigated.

7.2 Hardware

The proposed architecture requires one connection from a given C1 cell to an accumulator cell. Each
accumulator cell, however, may receive input from many C1 cells, perhaps thousands, depending
on the resolution[46]. We propose to build a small electronic model. First, the prototype will be
designed using analog hardware functionally equivalent to a neural network[14, 32]. The design
will be simulated on a digital computer and its performance evaluated. Then, if feasible, we will
construct a hardware prototype capable of processing a reasonably (e.g. 512 × 512) sized image.
Both analog and FPGA implementations will be evaluated.
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7.3 Learning

The architecture proposed above assumes an interconnection network which is specific to detecting
straight lines as they are presented in the visual field. One would suspect that such hardware
is built-in, since detection of the horizon is so critical to self orientation, but biological evidence
is lacking to indicate how much is built-in and how much is learned. Here, we assume the basic
architecture is built in, but the weights must be learned. This philosophy is consistent with the work
of Linsker [43] who assumed a locally-connected array of light detectors with local interconnections,
and showed how learning based on the Hebb rule can produce receptive fields.
The Hebb rule defines how the interaction between two neurons may be associated. Given two
neurons, say x and y, connected so that x provides input to y, the synapse between the neurons
changes according to ∆ij = ηx̂ŷ, where x̂ denotes the firing rate of neuron x. Thus, if firing
neuron x causes neuron y to fire, then, when x fires again, y is (slightly) more likely to fire. η
is the learning rate. Hebb learning has been described in many different variations since Hebb’s
original work in 1949[34]. However, when compared to more computer-appropriate algorithms such
as backpropagation, it remains the most biologically-plausible. Similarly, we hypothesize that Hebb
learning can result in interconnection weights which will detect long straight lines.
In this component of the research, we will ask how it is possible to arrange the accumulator array
in such a way that Hebb learning can produce the interconnection weights which in turn produce
the accumulation function and the peak detection function.
We propose to also use Spiking Neural Network(SNN) models for simulation of the connections
between complex cells and the accumulator array. SNNs use spike trains to convey information,
as opposed to neural networks which use single values[64]. The learning rule used is called spike
timing dependent plasticity, and is similar to Hebbian learning. SNNs work with a large number
of neurons, and may be trained with algorithms similar to backpropagation. Field programmable
gate arrays may be used for their hardware implementation. To handle the large number of afferent
connections from C1 cells, a time division multiplexing architecture may be used[31].

7.4 Impact on Models for the Visual Cortex

Neurophysiological experiments have functionally described much of the mammalian visual system.
The lower levels are known well, as mentioned earlier. We know, for example, that there are cells
which respond consistently to specific stimuli, such as edges.
Here, we should observe that all the tests described above use line detection rather than rising edge
or falling edge detectors.
At the lower levels, we also know that the cortex is roughly retinotropic. That is, cells which respond
to nearby stimuli in the visual field are themselves close together in the cortex. However, other than
those rather simple relationships, other researchers have not found good mapping between image
features, geometry, and computational organization. The approach described here identifies very
simple features, straight lines, but it potentially provides an understanding of other architectural
features in the vision system.
In section 4.2 we postulated the presence of a collection of cells which function as accumulators of
evidence, evidence which would suggest the presence of one or more straight edges in the scene.
We have shown that the interconnections between C1 cells and accumulator cells is not impossible,
but we have not demonstrated biological evidence for such an accumulator. A significant objective
of the proposed research is to address the question, “If such an accumulator exists, how can its
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presence be identified and measured in a biological neural network?” Of course, we do not currently
have an answer to that question, but a few directions of investigation may be suggested for future
work:

• Although each C1 cell is only required to have one afferent to the accumulator, each accu-
mulator may have many inputs. Therefore, to keep the interconnection density down in the
accumulator, some architectural variations may be provided to trade off, for example, res-
olution in the radial direction for interconnection density. For example, if the accumulator
were represented in polar coordinates, the position of image features would be measured more
accurately for features close to the center of the visual field. Could this be an explanation for
the well-known “log-polar” image representation which has been detected in the mammalian
visual system? Of course, the same argument for varying resolution would apply to pixels as
well as to edges. In future work, it might be possible to answer this question.

• Carl Weiman published a number of papers on log-polar transform (See section 3.2), includ-
ing one[62] which is particularly relevant to this proposal. In that paper, he used the duality
between lines and points to show that if one simply used log ρ, θ as the parameters of the
accumulator instead of ρ, θ, the “log-Hough” array was identical to the log-polar representa-
tion of an image described in section 3.2. We propose to extend this understanding to take
advantage of our earlier observation that using orientation knowledge, one can reduce the
number of axons between the image and the accumulator. Weiman suggests that both may
occupy the same portion of the cortex, taking care to maintain separation between image
data and accumulator data. We speculate that this may lead to an understanding of the
principles underlying the existence of the log-polar representation in the cortex.

• Following on the previous topic, we question how such an accumulator may be laid out in
the cortex. We always draw the accumulator as if it were physically located separate from
the C1 area, but that is simply a convenience for thinking about what feeds signals to what.
There is no particular reason for such a separation, and it is likely that the accumulator cells
are interspersed between the imaging cells. We would hope to investigate both architectures,
and evaluate average connection length, axon density, and learning/adaptation mechanisms.
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Chapter 8

An Algorithm for Drawing Straight
Lines

To perform the simulations described in section 6.1, it is necessary to draw straight lines. As is
well-known, it is difficult to draw straight lines which are very thin (one pixel) without distortions .
Figure 6.1 illustrates these phenomena, as the human detects angled lines differently from horizontal
or vertical lines. It turns out that the Gabor filter which we use to estimate directional derivatives
also responds differently to diagonal and vertical/horizontal lines. Correcting this is referred to
in the Computer Graphics community as “anti-aliasing.” The paper by Xiaolin Wu [65] probably
represents the state-of-the-art in making such images look “good” to human observers.
However, in our work with Gabor filters, we found a sensitivity that humans do not seem to have.
Consider a white horizontal line of length n pixels on a black background, and think of it as a
rectangle 1 pixel high and n pixels long. We compare that with a diagonal (45o) line, also n pixels
long. Place a circular receptive field of diameter m pixels (m > 2) about both of these lines. Within
the receptive field, there is more “whiteness” within the receptive field for the horizontal line than
for the diagonal line, thus the Gabor filter will produce a stronger response.
Our solution to this version of anti-aliasing is as follows. To draw a line of length l, with center at
point x0, y0 and orientation θ,

• Imagine each pixel as made up of a 9× 9 array of points, equally spaced within the 1× 1 area
of the pixel. Refer to these points as “subpixels.”

• Arrange the pixels vertically along the x = 0 axis.

• For each subpixel, rotate it by θ about the center of the line, and translate the resulting
coordinates by x0, y0.

• Determine into which pixel the rotated-and-translated subpixel lies, and increment the bright-
ness of that pixel by 1/81.

This correction improves significantly the uniformity of Gabor for lines. Figure 8.1 below, created
using the new method, should be compared with Figure 6.1 which creates straight lines using simple
dot-plotting.
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Figure 8.1: A collection of random lines segmented created using the new anti-aliasing algorithm.
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Chapter 9

Conclusion

We have described an architecture for detecting linear features in images which is biologically-
plausible. We have demonstrated reasonable performance estimates for this architecture through
simulation. Simulation has confirmed that high resolution accumulation can be implemented with
only a few directional derivatives, implemented using Gabor functions, and is therefore a feasible
model for how humans detect straight lines.
If the simple, sum-of-filter output (our mode 4) is used, the accumulator peaks are roughly circularly
symmetric, and have easy-to-identify peaks.
Our experiments used collinear or nearly-colinear collections of short, disjoint line segments. Dis-
joint line segments are much more strongly identified as belonging to a single longer line when the
segments are very close to collinear, within two degrees, and the computer simulation has provided
an explanation for this phenomenon in humans.
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Appendix A

Determining Orientation from Four
Estimates

At the S1 level of the standard model, we assume we have four estimates of the orientation of an
edge, determined using four different Gabor filters. Here we assume that the angle of observation
is or can be rotated into a frame in which two of those filters are orthogonal and we denote those as
vertical and horizontal, denoting them as basis vectors [0 1]T and [1 0]T respectively. The remaining
two filters are also mutually orthogonal, and are represented (in the frame of the other two – the
base frame) by [ 1√

2
1√
2

]T and [ 1√
2
− 1√

2
]T respectively. The direction of the edge in the base

frame is the unknown ordered pair G = [Gx Gy]T , and this direction has been measured four times,
producing µ = [ µ1 µ2 µ3 µ4 ]T .
Constructing the matrix B from the four basis vectors produces the relation

BG = µ , (A.1)

Using the pseudoinverse to find the minimum squared estimate of G for this overdetermined prob-
lem,

G = (BTB)−1BTµ (A.2)

Once we have the vector G, those two numbers define the direction.

(BTB)−1BT =

[
0 1

2
1

2
√

2
1

2
√

2
1
2 0 1

2
√

2
− 1

2
√

2

]
(A.3)

Thus, from four measurements of edge direction, a least-squares estimate can be derived by a simple
sum-of-products.
The two values of G can then be fed into a quantization neural network to obtain a single signal
which indicates the direction (angle). The quantization neural network is basically a straightforward
lookup table, with n inputs and 2n outputs, selecting one output axon as a function of the code on
the inputs; functionally a binary decoder.
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Appendix B

The Log-Polar Transform

The material in this appendix was written by Theju Jacob as a supplementary projected related
to this project.

B.1 Introduction

In this report we examine the nature of computation in the visual cortex as discussed in literature.
A log polar transform is believed to be the mathematical mapping which can explain how signals
received by the eye are interpreted by the human brain. We start with a brief introduction to
various elements in the human visual pathway. Beginning with experiments which provided the
first clues to such a mapping, we trace literature which first put forth the log polar idea, and then at
various modifications made to the original idea when more experimental results became available.
We also look at the two major explanations given for such a structure in the brain, and at the
arguments for and against each. Section 2 looks at literature primarily from the 1960s and 1970s.
Papers from 1980s, 1990s and 2000s are examined in section 3. We ponder the question of which
of the two explanations might be more accurate, and make our concluding statements in section 4.
The human visual system enables us to process and respond to all kinds of visual stimuli. Various
structures along the visual pathway, shown in Fig.1, constitute the visual system. Starting at the
retina, neurotransmitters travel through the lateral geniculate nucleus to reach the visual cortex.
The retina itself is a complex structure, with rods and cones acting as photodetectors, and layers of
horizontal, bipolar, amacrine and ganglion cells above them before optic nerve fibres are reached,
as in Fig.2. We have the fovea located almost at the center of the retina, representing about 5◦ of
visual angle. The highest concentration of cone cells and a near absence of rod cells are found at
the fovea. The outer region surrounding the fovea is called perifovea.
The visual cortex is divided into several areas named V1, V2, V3 and V4, Fig.3. In this study,
we are primarly concerned with V1, also called the primary visual cortex or striate cortex, though
other areas do make an appearance at various instances.

B.2 Beginnings - 1960s,1970s

The widely accepted notion today is that the projection from the mammalian retina to the visual
cortex takes the form of a logarithmic conformal mapping. A conformal mapping is a transformation
that preserves local angles. The idea of a logarithmic mapping appeared in literature for the first
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Figure B.1: Visual Pathway Structure from [28]

time in 1977[52]. The results of physiological experiments from previous decades are outlined and
the reasons why a logarithmic mapping explains the results are put forward by Schwartz in [52].
Results from [18], [39], [40], [1] and [2] are mentioned extensively in [52]. In [18], Daniel and Whit-
teridge outline experiments involving insertion of electrodes into brains of monkeys and baboons,
and discuss the responses to various visual stimuli. The authors plotted the paths traced in the
visual field by the electrodes in various cortex locations. The magnification factor, which is the
ratio of linear distance in mm between two points on the cortex to the angular distance in degrees
of corresponding points in the visual field, was computed and plotted for different segments of the
visual field. It was found that the magnification factor was the same for all points with the same
radius in the visual field, regardless of the angular coordinates. A plot of the results obtained by
the authors is shown in Fig.4, where eccentricity is the angular distance in degrees from the center
of the visual field. We can see that the magnification factor decreases as eccentricity increases.
However, the relationship is clearly not linear.
In [39] and [40], further studies of the monkey striate cortex are outlined by Hubel and Wiesel.
They detail orientation columns and ocular dominance columns and their mutual relationship.
Orientation columns refer to groups of cells located close together, which show a preference for
a particular orientation, while ocular dominance columns refer to groups of cells which show a
preference for a particular eye. The authors inserted probes into the cortex and noted how the
orientation and ocular dominance varied across the cortex. They note that the total width between
an array of orientation slabs that take in all of 180 degrees of orientation and a left plus right set of
ocular dominance columns amount to 0.5 to 1 mm in the cortex. Various plots outlining the changes
are outlined in their work. A plot relevant to our current investigation, showing the variation in
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Figure B.2: Cells in Retina from [28]

the receptive field size and magnification factor with distance from the fovea is shown in Fig.5. We
note that the receptive field size as well as the inverse of the magnification factor increase with an
increase in the distance from the fovea. A more detailed explanation of these results and other
results related to the mammalian visual system can be found online in [37].
In [1] and [2], Allman and Kaas look at the representation of the visual field in V2 as well as in the
medial area of the visual cortex in owl monkeys. Recordings were done inserting microelectrodes
into the owl monkey cortex and stimulating the eye using bars of light. They discovered that the
central 7◦ of the horizontal meridian correspond to a zone of the cortex across the width of V2,
after which the horizontal meridian representation splits and forms the anterior border of V2. The
vertical meridian was found to be covered by the posterior border of V2. They also found the areas
in V2 which represented the central sections of the visual quadrant. The medial area was found to
devote a greater proportion of its area to the peripheral areas of the visual field.
The results from Daniel and Whitteridge[18] were further analyzed by Schwartz [52], and the
following mathematical expression was given for cortical magnification:

m = k/r

where m is the magnification, k is a constant, and r represents eccentricity from foveal representation.[52]
states further that magnification is a differential quantity, and that we are interested in an analytic
function whose derivative is radially symmetric and is proportional to 1/r. The following complex
logarithmic function is put forth as satisfying the before stated requirements.

w = log(reiφ)

50



Figure B.3: Visual areas from [44]

where (r,φ) represents a point in the visual plane, and complex number w represents a point in the
cortical plane.
The magnification factor for the lateral geniculate nucleus or LGN takes the same form as that for
the striate cortex. The density of retinal ganglion cells as well as reorganization of neurons while
projecting from LGN to striate cortex are both thought to bring about the final form of the striate
cortex retinotopic map. The structure in the secondary visual cortex is also shown to be described
by a logarithmic conformal mapping. The authors also discuss how such a mapping can lead to the
structural regularity observed in the striate cortex by previous works [39] and [40]. In particular,
equal angular steps in the visual plane must transform to equal linear steps in the cortex, and the
complex logarithm is shown to accomplish such a transformation.
In [63], log spiral grids are put forth for digitization of images. Rotation and magnification of
images become simple pixel shifts on using the described technique, thus saving computation steps
and memory. The authors describe various methods to achieve the necessary transformation of the
image grids by introducing various tessellations.

B.3 1980s,1990s,2000s

In this section, we continue with the investigation of the presence of log polar mapping in the human
visual cortex. In [53] Schwartz states that the local columnar structure as well as the retinotopic
mapping found in the cortex can be explained by means of complex logarithmic mapping. The
author also suggests a logarithmic mapping as a mechanism for size and rotation invariance in
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Figure B.4: Plot of a set of results from [18]

vision. The expression derived previously in literature has now been modified to compensate for
the divergence at zero to:

w = log(reiφ + a)

where a is a constant. The modified expression gives us a linear map for small values of reiφ (<
a) and a logarithmic map for larger values. The author also demonstrates how changes in size or
rotation of objects reduce to a linear shift under the mapping.
Schwartz et al. in [54] studied the role of inferior temporal cortex rather than the primary visual
cortex. The IT cortex is thought to play a crucial role in visual object recognition, by enabling
us to identify shapes and patterns. IT neurons have large receptive fields that extend to both
half visual fields, and includes the center of gaze. Five macaque monkeys were tested with slits of
light, complex objects and Fourier Descriptor(FD) [3],[66] stimuli. The FD for a particular shape
was obtained by expanding the boundary orientation function as a Fourier series. The boundary
orientation function of a shape in turn is determined by measuring the orientation of the shape’s
boundary at regular intervals around the perimeter. Using FD to describe a shape would make it
invariant to position and shape of the stimulus. For the majority of IT neurons thus tested, size,
position and contrast variations did not affect the output, which appeared to suggest that the cells
must be sensitive to the overall shape of the stimulus. The authors also suggest that coding of
boundary curvature may not be the exclusive function of IT neurons, as some of them have been
found to be selective for color, texture and spatial frequency.
The striate cortex responses to visual stimuli in rhesus monkeys are recorded in [22] by Dow et
al., and the relationships between eccentricity and magnification factor, receptive field size and
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Figure B.5: Plot of a set of results from [40]

the minimum angle of resolution are examined. The authors found that their results agreed with
previous literature [18],[39],[40] with minor modifications, except that they did not find inverse
magnification to be related to the minimum angle of resolution by a constant of proportionality,
like in [18]. They also note that the parallel relationship between field size and inverse magnifica-
tion do not hold well in the fovea, as inverse magnification becomes smaller than field size at an
eccentricity less than 5◦. The same authors present a detailed mapping of the monkey striate cortex
in [23]. They describe a new technique for transferring various penetration sites on the cortex onto
a map, so as to form a coherent picture of the cortex and its various areas. Their technique enabled
detailed comparisons of different hemispheres of the cortex. Parameters measured include verti-
cal/horizontal magnification anisotropy, which was found to be 1.5:1 at central eccentricities, and
foveal magnification, which was found to be different along different meridians in different fields.

B.3.1 Emphasis of Central Vision in Retina

The hypothesis that higher retinal ganglion cell densities lead to the final form of striate cortex
retinotopic map was previously seen in literature[52]. A strong argument for higher density of
ganglion cells in the fovea leading to higher emphasis on central vision in the cortex is put forth
in [61] by Wassle et al. Those authors used improved techniques for determining ganglion cell
densities in monkeys. Amacrine cells, known to be displaced regularly into the ganglion cell layer,
were discounted. Results are shown in Fig.6. The density of cones were found to decrease from
a peak of 250,000/mm2 at the fovea to 11,500/mm2 at 3 mm eccentricity. Cone pedicles, the
synaptic terminals of cones, are nearly absent at the fovea, but increases sharply and flattens at
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Figure B.6: Plot of a set of results from [61]. From [61] - ‘Density gradients of cones, cone pedicles
and ganglion cells along the temporal horizontal meridian of a macaque monkey fovea. The inset
in (A) shows the retinal area examined. The blind spot(open circle), the fovea(asterisk), and some
blood vessels characterize the central retina. A rectangl 3.5 x 2.5 mm wide was cut from the eye
cup, vertical sections were cut through the upper part, and horizontal sections through the lower
part. (A)Cone density; (B) cone pedicle density; (C) ganglion cell density; (D) comparison of the
density gradients (modified from Wassle et al., 1989).’

500µm, peaking at a plateau of 32,000/mm2. Ganglion cells have a density profile similar to that
of cone pedicles, but more ganglion cells are present at lower eccentricities. A plateau is present at
800µm, with a maximal density of 60,000/mm2. The authors point out that the change in ganglion
cell density follows a profile similar to change in magnification between central and peripheral visual
field in the cortex, and hence they claim that ganglion cell density can fully explain the variation
in the cortical magnification factor.

B.3.2 Emphasis of Central Vision in Retino Cortical Pathway

Van Essen et al.[60] undertook a detailed study of the visual cortex in macaque monkeys. A smooth
variation of recording sites within the cortex was found to correspond to a smooth progression in
receptive fields, thus preserving all neighborhood relationships. This further implied that the cortex
is retinotopic. Large variations were found in the relative emphasis on different parts of the visual
field representation in striate cortex between individuals. The authors also state that the striate
cortex lacks radial symmetry in 2 respects - greater emphasis is placed on the horizontal meridian
when compared to the vertical meridian, and the inferior parts of the visual field are slightly more
emphasized than the superior parts of the visual field. Plots for magnification factors vs eccentricity
were obtained, as shown in Fig.7. The authors also gave new expressions for linear and areal cortical
magnification factors which better fit the data than those previously available in literature. For
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example, the areal cortical magnification factor, the ratio of area in the cortex in mm2 to the
corresponding area in the visual field in deg2, was now given by

Ma = 140(0.78 + E)−2.20mm2/deg2

where E is the eccentricity. The equation for Ma predicted a ratio of 4400 in areal magnification at
1◦ vs 80◦ eccentricity. On the other hand, retinal ganglion cell density at 1◦ was found to be about
50 times that of the density at 80◦, which implied that central vision is emphasized much more in
the cortex than in the retina.

Figure B.7: Plot of a set of results from [60]. From [60] - ‘Cortical magnification as a function
of eccentricity. Linear magnification (mm/deg) along iso-polar contoursis shown in (A) and along
iso-eccentricity contours in (B). Areal magnification is shown in (C). Calculation of magnification
factors was based on the topographic contours illustrated in Fig.5. The map coordinates of the
intersections of iso-eccentricity and iso-polar contours were entered into the computer via a graphics
tablet. In regions where there was sufficiently detailed information about visual topography, the
spacing of contours was twice as close as that shown in the preceeding figure. Regression lines
were calculated according to the least-squares method. For each compartment the length of each
side was divided by the length of the corresponding visual field compartment to obtain the linear
magnification factors (Me and Mp , and the area of the cortical compartment was divided by the
area of the visual field compartment to obtain the areal magnification factor.’

Azzopardi and Cowey[4] further supported the idea that the central visual field is emphasized
more in the cortex than in the retina. The authors used a retrograde transneural tracer on rhesus
monkeys, and the number of ganglion cells projecting to marked areas of the cortex were counted.
They computed the average area in the visual cortex receiving a projection from a single ganglion
cell, and used that as an index of cortical allocation. If cortical allocation were to mirror the
ganglion cell distribution across the retina, the ratio of perifoveal to peripheral cortical allocation
should be 1. However, the ratios were found to lie in the range from 3.29 to 5.93. Therefore, the
authors state, the emphasis on central vision in the cortex cannot be explained by the changes in
retinal ganglion cell density alone. They hence contradict the results from [61].
The same authors conducted more detailed experiments on macaque monkeys and presented their
results in [5]. This time, they studied the allocation of neurons for the fovea in the dorsal lateral
geniculate nucleus as well. Once again, cortical allocation values larger than 1 were obtained,
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thereby implying that the cortical map of the retina is not peripherally scaled, but that relatively
more cortex per ganglion cell is alloted in the fovea and surrounding retina.[5] also states why
arguments about estimates of ganglion cells representing the fovea being erroneous do not hold in
the current set of experiments - the authors are comparing cortical areas with their total number
of ganglion cells, including laterally displaced ganglion cells. Arguments for higher ganglion cell
counts near the fovea, as well as for the presence of displaced amacrine cells in the ganglion cell layer
thereby leading to erroneous ganglion cell count have also been discounted. The results obtained
by the authors indicate that the representation of the fovea is magnified when moving from the
retina to the lateral geniculate nucleus and from the lateral geniculate nucleus to the striate cortex.
Further support to the idea of an overrepresentation of the fovea in the cortex is given by Popovic et
al[48]. The authors analyzed data from already available literature and computed the relationships
between cortical magnification factor, effective ganglion cell separation and the minimum angle of
resolution. A set of results are shown in Fig.8. A linear relationship was found between effective
ganglion cell separation and minimum angle of resolution. They show that the inverse magnifica-
tion factor and the before-mentioned quantities of ganglion cell separation and minimum angle of
resolution are also related linearly. The results point out that a markedly larger amount of striate
cortex per cell and amount of visual cortex is devoted to fovea and surrounding retina. The paper
concludes that the overrepresentation of the fovea and immediately surrounding retina are caused
by an additional magnification in retino cortical pathway.

Figure B.8: Plot of a set of results from [48]. From [48] - ‘Plot of the product of effective GC
separation (S,deg) and the linear cortical magnification factor (M,mm/deg) vs. eccentricity (filled
symbols), as well as the product of resolution thresholds (MAR, deg) and M vs. eccentricity (open
symbols), for the data of Engel et al.(1997) Sereno et al.(1995), describing the reserved amount of
visual cortex (in mm) per GC and the amount of visual cortex needed to process a given resolution
threshold, respectively.’

B.3.3 Later studies, use of fMRI

The question of how information transfer happens between neurons and how it is influenced by
cortical organization is examined in [58]. There are 2 possibilities for how information transfer
occurs between neurons: information is present in the spike rate of neurons, or in the precise
timing of individual spikes. The authors examined excitatory post synaptic potentials (EPSPs) and
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inhibitory post synaptic potentials (IPSPs) of neurons and the question of how they are balanced.
For orientation selective neurons, for example, EPSPs and IPSPs occur frequently for optimally
oriented stimuli. As excitatory inputs bombard a cell in the hundreds, much more than necessary to
depolarize a cell membrane from resting potential to spike threshold, the authors propose that the
primary role of inhibition is to prevent the cell firing rate from reaching saturation. As excitatory
synapses outnumber inhibitory synapses by 6:1, the authors suggest that inhibitory synapses might
be more effective in their activity than excitatory synapses. In summary, the authors establish that
‘a random walk model with balanced excitatory and inhibitory inputs allows the neuron to behave
as an integrate and fire device and maintain a reasonable response rate, with irregular ISI’.
The use of functional magnetic resonance imaging to study the human visual cortex directly is seen
in subsequent papers. In [24], Engel et al. used a contrast reversing checkerboard as stimuli. As
the stimulus moved from fovea to periphery, the fMRI signal was delayed at locations containing
neurons with peripheral receptive fields when compared to those containing neurons with foveal
receptive fields. A rotating wedge stimulus was used to study the retinotopic organization with
respect to polar angle. They also obtained clear demarcation between various areas in the visual
cortex. Similar stimuli were used in all subsequent fMRI studies by other authors as well. A study
similar to [24] of the human visual cortex using fMRI was conducted by Sereno et al. in [56]. The
extent and borders of various visual areas were identified, and iso-eccentric and iso-polar maps of
the visual areas obtained. A comparison between human and other primate visual areas is made,
and the cortical magnification factors plotted, as shown in Fig.9. Their studies imply that humans
have extreme emphasis on the center of gaze, however, they leave the question of the reason for the
emphasis (emphasis on the retina vs emphasis on the cortex) open.

Figure B.9: A set of results from [56]
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Balasubramanian et al.[6] modifies the previously proposed expressions for log polar mapping with
the idea of a dipole mapping:

w = log(z+a) - log(z+b)

where w is a point on the cortical plane, z is a point on the visual field and a and b are constants. The
authors point out that the modified expression captures the shape of the V1 boundary exhibited at
peripheral representation as well as the fact that inverse cortical magnification factor is sub-linear in
the peripheral field. The dipole mapping is then further modified in order to explain more complex
features like the boundary conditions between V1, V2 and V3 and the spacing of iso-eccentricity
lines.
Dougherty et al.[21] describes the use of fMRI to study visual cortex areas V1, V2 and V3. The
authors obtained maps of the locations of these areas in the cortex, and determined their surface
areas for the central 2◦-12◦ of the visual field. For the central 1◦-2◦, the various areas were not
distinguished, and the combined surface area for this central region of the visual field was determined
to be 2100 mm2. The variation of cortical magnification with eccentricity was found to be in
agreement with previous literature. The plots showing the variation for all three visual areas, for
all of the test subjects, were obtained, Fig.10.

Figure B.10: A set of results from [21]

Further studies of the human visual cortex using fMRI are seen in [50] by Schira et al. The authors
determined more accurately the borders between V1, V2 and V3, and obtained 2 dimensional
reconstruction of various iso-polar and iso-eccentricity lines in V1. They started out with the
following expression for magnification:

m = k/(r+a)
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where m is the magnification at eccentricity r, and k and a are constants. They determined the
value of a to be approximately 0.75 for both V1 and V2, and k to be 1.92 for V1 and 1.59 for V2.
The magnification vs eccentricity plots obtained are shown in Fig.11. The authors also modified
the mapping introduced in [6] so as to preserve the meridional isotropy of the area at the expense
of small degree of local anisotropy. The question of whether V1 is actually flat, and if variability
between individuals can affect the construction of a generic model for V1 is also examined in
the paper. The authors make the case for V1 being intrinsically flat, and state that a general
model is the best way to estimate V1 parameters, in the cases where we are unable to measure V1
morphometry for individuals.

Figure B.11: A set of results from [50]. From [50] - ‘Mean M√A vs.eccentricity across all subjects
fitted by Eq.1. A: measurements across areas and studies. V1 data are plotted in red(fit: a =
0.77 ± 0.03;k = 19.2 ± 0.25 and V2 data are plotted in blue(fit: a = 0.73 ±0.03;k = 15.9 ± 0.21).
The gray line shows the cortical magnification function(V1) from Horton and Hoyt (1991a)(a =
0.75;k=17.6) and the red * symbols are points from Dougherty et al.(2003), error bars depict SE.
Because our measurements did not extend beyond 12◦ of eccentricity, the data are well described
by the monopole model or the corresponding linear magnification function(Eq.1).B: individual
measurements from the present study. Colored graphs show the results in individual subjects, the
dotted gray line the fit for V1. C: mean inverse magnification of V1 with the best-fitting straight
line for ready comparison with studies such as Rovamo and Virsu (1979, Levi et al.(1984), McKee
and Nakayama (1984), Stensaas et al.(2001), Tyler (2001), and Duncan and Boynton (2003).’

Boucart et al.[15] conducted a study with the following purposes - 1)compare the performances in
implicit and explicit recognition tasks using same set of stimuli at 2 peripheral eccentricities - 30◦

and 50◦ 2)Assess whether people who have lost central vision early in life develop their peripheral
vision. Implicit recognition involved facilitation for old stimuli as compared to new stimuli in terms
of latency and accuracy. Images were presented in 2 stages - a test stage, and a study stage. In
the study stage, the images presented included - 1)images previously presented in the study stage,
2)images of objects with same names but different appearances as the images in test stage - for
example, the image of a different cat 3)images of new objects. The authors found no significant
difference in performance between identical and same name pictures in people with normal vision.
New pictures did poorly when compared to identical and same name pictures in terms of response
time and accuracy. For candidates who had lost central vision, identical pictures were identified
faster, but no significant difference was found between performances for new pictures and same
name pictures. In people with central vision loss, the visual system appeared to have put its
resources into developing a preferred retinal locus which would stimulate cortical regions which
previously responded to centrally displayed stimuli.
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We also came across papers on contour detection during the course of our investigation. In [27],
Field et al. present their results from 5 experiments which tested the ability of observers to iden-
tify contours from within a field of randomly oriented elements. The experiments were conducted
by varying orientation, spacing and so on between the elements belonging to the contour. Their
results led the authors to propose a local association field in our visual field. In [30], Gintautas et
al. measured time taken by human observers to identify segmented, closed contours in backgrounds
with clutter, and found that it matched their model of local association fields in the cortex. When
considering probabilistic methods for edge detection, it has been found that there is a local maxi-
mum in the pairwise probability distribution for edge elements that are nearly co-circular as well as
nearly parallel. The experiments in [29] suggest that humans have good knowledge of the pairwise
statistics of edge element geometry and contrast polarity, and that they use the knowledge effi-
ciently. Feldman[25] puts forth a Bayesian model for contour detection, and suggests that humans
detect contours using such a model. In [45], Ma et al. suggest that humans take into account the
reliability of the observation when trying to detect targets, and they put forward a log likelihood
ratio to capture the idea.

B.4 Conclusion

In the literature we came across, far more papers support the idea that the fovea is indeed overrep-
resented in the cortex, and that this cannot be explained by the higher number of cones/ganglion
cells found in the fovea and surrounding areas alone [60],[4],[5],[48],[24]. We support the same
hypothesis. Fovea, which occupies only 0.01% - 0.025% of the area of the retina, is represented by
approximately 8% of the striate cortex area, and this emphasis on central vision does not directly
correspond with the emphasis in the retinal cell density. Hence, the additional magnification must
happen in the retino cortical pathway, more specifically in the lateral geniculate nucleus [5]. We
put forth the idea that the additional emphasis for central vision in the cortex is the result of a
learning process by the visual system, and that this learning was triggered by the higher number of
cones/ganglion cells in the fovea we started out with. Indirect support to this idea can be seen in
[15]. In the absence of central vision, a preferred retinal locus which triggered the original central
vision cortical regions developed in the test subjects. So in a person who starts out with normal
central vision, the fovea and surrounding areas would get such a preferential treatment. The reason
for such a preference in the first place would be the higher number of cones/ganglion cells in the
fovea, which naturally makes it the location from where the cortex receives maximum information.
A preferential treatment would lead to further magnification in the visual pathway and the cortex.
We have completed a survey of the important pieces of literature related to the existence of a
log polar transformation in the human visual system. The idea of such a transformation remains
unchallenged, and researchers continue to investigate the reasons for the existence of such a trans-
formation. We related two key explanations for such a mapping, and looked at the literature
presenting the evidence for both explanations. We support one of the two explanations, and put
forward our own ideas as to how such a mapping could have developed in the visual cortex.
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Appendix C

Software

C2LaTeX

/* This is version2.4 */

This is a listing of the source code for the simulator. Included are some support functions and
debugging functions which are not used in the final version.

Created by Wesley Snyder on 3/20/12. Copyright (c) 2012 North Carolina State University. All
rights reserved. This program simulates area V1 of the cortex finding a straight line in an image.

//

SLDSimulation.c Version1.1 Created June 18, 2012
version2.0 Released June 22, 2012
Version1.2 Created June 23, 2012.
Version1.3 Created June 25, 2012.
Version 1.3: This version reverses the order of searching for the maxima in the accumulator. In
this version, first, the accumulator is filtered by a relatively small (3× 3) low pass filter. Then, an
image is created by running findpsr find peak to sidelobe ratio. Then the maxima of that image are
located. Version1.4 Created July 5, 2012.
Version2.0 Created July 9, 2012.
Version 2.0 cleans up a few messy bits of code, speeds up a few things, and emphasizes the brightest
peak in the reconstructed image.
Version 2.1 allows the command line control of:

• sigma (of the edge detector),

• number of iterations

• some other stuff

Version 2.2: Created July 18, 2012 Version 2.2 includes most of the functions into a single file
(primarily to make documentation easy). It also allows increasing the Q of the Gabor filter by
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optionally modifying the mu loop at the beginning of the function Accumulate. The option is
implemented (at this release) by using ifdef Q
Version 2,3, Created July 22, 2012
This version finds the top three lines, and shows them in the plot.
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C.1 Definitions and structures

The simulation assumes that at each point in the visual field there are p-¿numorientations) orienta-
tions covering a range totaling 180 degrees. This is in agreement with literature [51] that suggests
the orientation sensitivity of higher mammals (including presumably humans) is about ten degrees.
The number of distinct orientations is thus 18.
The program goes through the following steps:

1. read in the input image and initialize (function initialize)

2. pass the input image through a temporal high-pass filter (function HighPass). The result of
this is that over time, if the image does not change it will fade away.

3. apply a spatial high-pass filter to the image (function myflGabor).

4. For every pixel in the resulting high-pass filtered image, calculate its contribution to an ac-
cumulator. (function Accumulate) Note that there are seven possible modes of accumulation.
Mode 5 seems to work best, and is the default. The mode is set by using the -m switch on
the command line.

5. distinctive points in the accumulator are identified and marked (function findpsr). This
function was so named because it was originally designed to use the maxima of the peak-to-
sidelobe ratio. However, it turns out that the psr doesn’t work very well.

6. for each peak in the accumulator which has been marked, draw a line on the screen.(function
Houghinvsub).

The accumulators (there are two) are floating point, and have a width of 180+2P̂ , where P̂ is a pad
value set by the variable PAD, which is defined int Neuralhough.h. The accumulator is similarly
padded in the vertical direction. Currently PAD is 10 pixels. The purpose of the padding is to allow
a peak on occur on the exact left, right, top, or bottom of the accumulator. BY CONVENTION,
when a function is called with accumulator coordinates as arguments, the actual coordinates will
be used (rho takes on values between −ρ and ρ and theta will be an integer between 0 and 180

#define MINBRIGHTNESS 50
#define LASTITERATION 30

#include <flip.h>
#include <stdio.h>
#include <math.h>
#include <sys/stat.h>

#include <NeuralHough.h>
struct clp {

char *infilename;
int RecordFlag;
int mode;
int loops;
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float stddev;
int degreespersample;
float wavelength;
float aspect;
int numpeaks;

};

The structure param is used to hold more or less global information about the state of the program,
such as pointers to the images, before, during, and after high pass temporal filtering, edge detector
outputs, etc.
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C.2 Help Function

The function usage explains the argument list to the program. The function is declared static to
avoid linking name conflicts.

/*===================================================*/

/* usage */

/*===================================================*/
static void usage(void)
{

printf("Usage: SLDSimulation -i filename [-s] [-v var][-m x] [-l iterations] -d pixelspersample -w wavelenth -a aspect\n");
printf(" The file name will be saved as retina.ifs if retina.ifs changes, \n");
printf(" the HT will be updated.\n");
printf(" If the -s flag is present, it will indicate saving the\n");
printf(" evoluation of the accumulator in a (rather large) file.\n");
printf(" The -m switch selects the mode of accumulation. Default is 5\n");
printf(" The -v switch allows the user to specify the std dev (sigma) of the Gaussian for the edge detector.\n");
printf(" Default is 0.75\n");
printf(" The -l (loops) switch allows the user to specify the number of iterations. Fading reduces the\n");
printf(" signal-to-noise ratio, so the system is most sensitive at iteration 3. Default is 3\n");
printf(" the -n switch controls the number of maxima to plot. Default is 3\n");

printf(" The -d switch controls the number of degrees/sample. For example, since the number of degrees is\n");
printf(" 180 always, degrees/sample indirectly also selects the number of orientations. For example\n");
printf(" one might choose degrees/sample to be 10, which would cause 18 samples to be used. 18 degrees\n");
printf(" per samples would require ten samples. Default is ten degrees/sample. Use integers. \n");
printf(" The -w switch controls the wavelength of the Gabor filter. Default is 2.0.\n");
printf(" The -a switch controls the aspect ratio of the Gabor filter. Default is 0.75 (slightly elongated)\n");
exit(-1);

}
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C.3 Parsing the Command Line

The function clparse reads the command line and interprets the command arguments. It also
initializes several variables

/* -------------------CLPARSE---------------------*/
/* command line parser */
static void clparse(int argc,char **argv,struct clp *stuff)
{
int i;

void usage(void);

/* set default values in returned structure */
if(argc == 1)
{
printf("You must specify arguments to this program\n");
printf("use SLDSimulation -h for more details\n");
exit(-1);
}
stuff->infilename = "";

stuff->RecordFlag =0;
stuff->mode =5;
stuff->stddev=0.75;
stuff->loops=3;
stuff->degreespersample = 10;
stuff->wavelength = 2.0;
stuff->aspect = .75;
stuff->numpeaks = 3;

for(i = 1; i< argc;i++)
{
if (*(argv[i]) != ’-’)
{
printf("Command line arguments must start with a dash\n");
exit(-1);
}
switch ( *(argv[i] + 1))
{
case ’h’:
{

usage();
exit(0);

}
break;
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case ’i’:
stuff->infilename = argv[i+1];
i++;
break; /* infilename */

case ’m’:
stuff->mode = atoi(argv[i+1]);
i++;
break; /* mode */
case ’s’:
stuff->RecordFlag = 1;
break;

case ’l’:
stuff->loops = atoi(argv[i+1]);
i++;
break; /* loops */

case ’n’:
stuff->numpeaks = atoi(argv[i+1]);

if(stuff->numpeaks >6)
{printf("Cannot draw more than 6 peaks.\n");

exit(-1);}
i++;
break; /* number of peaks to be shown */

case ’v’:
stuff->stddev = atof(argv[i+1]);
i++;
break; /* stddev of edge detector blur */

case ’d’:
stuff->degreespersample = atoi(argv[i+1]);
i++;
break; /* stddev of edge detector blur */

case ’w’:
stuff->wavelength = atof(argv[i+1]);
i++;
break; /* Gabor wavelength */

case ’a’:
stuff->aspect = atof(argv[i+1]);
i++;
break; /* Gabor aspect ratio */
default:
printf("SLDSimulation: unknown option \n");
exit(-3);
break;
}
}
}
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C.4 Saving Accumulator to Disk

This is a function used primarily for debugging. It saves the floating point accumulator to disk as
a floating point ifs image. The padding is also saved.

/*=========================SaveAccPadded2Disk============================*/
/* */
/*=================================================================*/
void SaveAccPadded2Disk(float **acc,char *filename,struct param *p)
{

IFSIMG hout;
int hr,hc;
float value;
int hlen[3];

void copyandconvert(float **,IFSIMG);

hlen[0]=2;hlen[1]=180+2*PAD;hlen[2]=2*p->Accrows+2*PAD;
hout = ifscreate("float",hlen,IFS_CR_ALL,0);

for(hr=0;hr < 2*p->Accrows+2*PAD;hr++)for(hc=0;hc < 180+PAD;hc++)
{

value = acc[hr][hc];
// if(acc[hr][hc] > 10.0)printf("writing %f at %d %d to padded acc file \n",value,hr,hc);

ifsfpp(hout,hr,hc,value);
if(isnan(ifsfgp(hout,hr,hc)))

printf("SaveAccPadded2Disk:nan at %d %d\n",hr,hc);fflush (stdout);
}
ifspot(hout,filename);
ifsfree(hout,IFS_FR_ALL);

}
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C.5 Computing a histogram of the Accumulator values

This is also primarily used for debugging. It prints out the count of how many cells in the accu-
mulator have distinctive brightness as a function of angle.

/*=================================HistogramAccumulator===============*/

void HistogramAccumulator(float **Acc,struct param *p)
{

int r,c;
float sum;
for(c=0;c<180 + 2 * PAD;c++)
{

sum=0;
for(r=0;r < 2*p->Accrows + 2 * PAD;r++)

sum += Acc[r][c];
// if(sum != 744.0) printf("iteration %d, %d %f\n",p->iteration,c,sum);

}

}
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C.6 Main Program

The program uses a 3D data set to store the output of the orientation-sensitive edge detectors. The
name of that image is Gaborout.ifs. The main program initializes all the data structures and runs
the program.
The input image is read from a disk into memory, and then high-pass filtered with respect to time.
In this way, if the same stimulus is presented only once, it will fade over time. Each time through
the main loop, the program checks the creation date on the input file (retina.ifs). If the file has
changed, it will be read and input to the filter.

/*=====================================================================*/
/* */
/* main */
/* */
/*=====================================================================*/

int main(int argc, char *argv[])
{

int displayindex; // number required to know which display to use
struct param mparam,*p; // a list of global parameters
p=&mparam;

int inititalize(char *, struct param *);
int HighPassFilter(struct param *,int);
extern void copyandconvert(float **, IFSIMG);
int Gabors(IFSIMG ,IFSIMG, float ,float,float);
int WriteToIFSDisplayWindow(int,IFSIMG,int,float,int,int);
int Accumulate(IFSIMG,float **, struct param *,int);
void writefile(IFSIMG ,char * ,int );
void usage(void);
int findpsr1(struct param *);
float findpsr2(struct param *);

void saveacc(struct param *);
void clparse(int ,char *[],struct clp *);

void zap(IFSIMG);
void zapacc(float **,struct param *);
void clparse(int,char *[],struct clp *);
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void clip(IFSIMG);
struct stat mystat, *info;
int oldmtime;
int status;
struct clp myclp, *stuff;

The accumulator is 180 degrees wide, and divided into NUMORIENTATIONS blocks. This variable
is set in the include file to be 18. However, in modifying the program, be careful. The numbers 180,
18, or 10 (degrees per sample) may be used without reverence to this macro. This inconsistency
will be corrected in future releases.
It is important to remember that the accumulator is actually a doubly-indexed floating point array.
This array has dimensions (2PAD+ 180)×2Accrows. The accumulator itself is 180 columns wide,
but is imbedded in a larger array to avoid boundary problems

stuff=&myclp;
clparse(argc,argv,stuff);

// printf("SLDSimulation version 2.1\n");
p->degreespersample = stuff->degreespersample;
p->numpeaks = stuff->numpeaks;
p->numorientations = 180/stuff->degreespersample;
info=&mystat;
p->df = 180/stuff->degreespersample; // pixels per sample, also degrees per sample
p->deltatheta = p->degreespersample / RAD2DEG; // space betweeen samples, measured in radians

oldmtime=0;

The first argument is the name of the input file. That is stuff-¿infilename. The name is passed to
the initialize function. First, we check that there are at least two arguments.

if(stuff->RecordFlag) p->RecordFlag = 1;else p->RecordFlag=0;
p->iteration =0;
p->display1 = initialize(stuff->infilename,p);// initalize all images

The input will be read if it needs to be read and update y. Note that this is doing high pass filtering
in time.

// printf("Waiting for something to happen:\n");
do
{

p->iteration++;
// printf(" %d\n",p->iteration);fflush(stdout);

stat(p->infilename,info);
if (info->st_mtime > oldmtime)
{

/* enter here if the input file has been rewritten */
/* read the new input image */
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// printf("Something Happened at iteration %d!!",p->iteration);
oldmtime=info->st_mtime;
ifsReRead(p->infilename,p->retina);
p->iteration=1;

}

loop1: status = HighPassFilter(p,p->iteration);
if(status ==0)
{

p->iteration++;
printf(".");
goto loop1;

}

function Gabors will compute the Gabor filter of the input at all the orientations

Gabors(p->y,p->v,stuff->stddev,stuff->wavelength,stuff->aspect);

zapacc(p->Acc1,p); // set the last version of the accumulator back to zero

Here is the call to the critical function: Accumulate. The function accumulate will add up all the
inputs to the accumlator

Accumulate(p->v,p->Acc1,p,stuff->mode);

the following two lines have been commented out to make the program run faster, but are very
useful for debuggin.

// HistogramAccumulator(p->Acc1,p);
// SaveAccPadded2Disk(p->Acc1,"HoughAfterAccumulate.ifs",p);

the function saveacc is only called for debugging. It writes a large file. Before opening the output
file, the function saveacc will check to see if the user wants to write the file. This desire is expressed
by setting the -s switch

saveacc(p);
copyandconvert(p->Acc1,p->iAcc);

// ifspot(p->iAcc,"iAcc.ifs");

here is where the accumulator is displayed on the screen, at the upper left of the screen
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WriteToIFSDisplayWindow(p->display1,p->iAcc,0,1.0,0,0);
sleep(1);

// usleep(250000); // wait 250 microseconds

now find the point with maximum peak-to-sidelobe ratio the function findpsr finds the peaks of an
accumulator at a particular point

if( findpsr1(p) > 0) showHoughinv(p);

} while (p->iteration < stuff->loops);// end while loop
sleep(5);

}// end main
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C.7 saveacc

/*===================saveacc==========================*/
/* writes a series of accumlators to a 3D float disk file */
/* */
void saveacc(struct param *p)
{

double v;
int r,c;
float max,min,scale;
int len[3];
char filename[132];
IFSIMG outimg;
if(p->RecordFlag == 0 ){/*printf("Returnflag = 0");*/return;}

#ifdef PNGS
len[0]=2;len[1]=180;len[2]=2*p->Accrows;
outimg=ifscreate("u8bit",len,IFS_CR_ALL,0);
for(r=0;r < 2*p->Accrows;r++)

for(c=0;c < 180;c++)
{

v=p->Acc1[r+PAD][c+PAD];
ifsfpp(outimg,r,c,v);

}
sprintf(filename,"saveacc%d.png",p->iteration);
ifsCVpot(outimg,filename);
ifsfree(outimg,IFS_FR_ALL);

#else
// printf("Entering saveacc\n");fflush(stdout);

if(p->iteration == LASTITERATION)
{

// printf("saveacc saving\n");fflush(stdout);
// ifspot(p->savedacc,"savedacc.ifs");

return;
}

// printf("saveacc adding a frame\n");fflush(stdout);
// find max and min in this frame

max = -100000.0;min=100000.0;
for(r=PAD;r < 2*p->Accrows+PAD;r++)

for(c=PAD;c < 180+PAD;c++)
{

v = p->Acc1[r][c];
if(v>max) max =v;
if(v<min) min =v;

}
if(max != min) scale = 255.0 / (max - min);else scale =1.0;
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// now scale the image as it is stored.

for(r=PAD;r < 2*p->Accrows+PAD;r++)
for(c=PAD;c < 180+PAD;c++)
{

v=p->Acc1[r][c];
ifsfpp3d(p->savedacc,p->iteration,r-PAD,c-PAD,(v-min)*scale);

// if(r == 343 && c == 125)
// printf("saveacc:%d %d %d %f\n",p->iteration,r,c,v);fflush(stdout);

}
#endif
// printf("Leaving saveacc\n");fflush(stdout);
}
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C.8 Find peaks in accumulator

/*======================findpsr1======================= */

this function searches the accumulator to find maxima and if */ that is over a threhold, marks it
in the accumulator and erases all other points
marking is done by making the point negative

/*=======================================================*/
#define PSRTHRESH 1.0 // no longer used
int findpsr1(struct param *p)
{

float maxpsr,pssr;
int maxpsrrow,maxpsrcol;
int r,c,count;
float value;

extern float psr(float **,int,int,int,int);
extern float psracc1(struct param *p,int r,int c );
extern void remarkacc1(struct param *);
extern void ShowAccNeighborhood(struct param *,float **,int, int);
extern int localmax(struct param *,float **,int ,int);
void copyandconvert(float **,IFSIMG);
count = 0;

first copy all of Acc1 to Acc2

for(r=0; r < 2*p->Accrows+2*PAD ;r++) for(c=0; c < 180+2*PAD;c++)
p->Acc2[r][c]=p->Acc1[r][c];

Now, Acc2 is the acc. Search Acc2 for maxima. When a max is found, the corresponding in Acc1
is made negative.

for(r=-p->Accrows; r < p->Accrows ;r++) for(c=0; c < 180;c++)
{

if( p->Acc2[r+p->Accrows+PAD][c+PAD]>100.0 && localmax(p,p->Acc2,r,c) )
{

// if(c == 145)
// {
// printf("Acc2:");
// ShowAccNeighborhood(p,p->Acc2,r,c);
// printf("Acc1:");
// ShowAccNeighborhood(p,p->Acc1,r,c);
// }

value = p->Acc2[r+PAD + p->Accrows][c+PAD];
if(value > 10000.0 && localmax(p,p->Acc2,r,c))
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{
p->Acc1[r+PAD + p->Accrows][c+PAD] =
value * -1.0;

// printf("find: marking acc1=%f at rho = %d theta = %d, (%d %d)\n",
// value, r,c,r+p->Accrows+PAD,c+PAD);fflush(stdout);

count++;
}

}
else
{

p->Acc1[r+PAD + p->Accrows][c+PAD] =
p->Acc2[r+PAD + p->Accrows][c+PAD];

}
}

// printf("findpsr1: marked %d points\n",count);fflush(stdout);
// remarkacc1(p);

#define SHOWINPUTACC
#ifdef SHOWINPUTACC

{
void SaveAccPadded2Disk(float **acc,char *filename,struct param *p);
SaveAccPadded2Disk(p->Acc2,"HoughPadded.ifs",p);

}
#endif

return count;
}

/*======================findpsr2=======================*/
/* not used in this version */
/*====================================================*/
float findpsr2(struct param *p)
{

float maxpsr,pssr;
int maxpsrrow,maxpsrcol;
int r,c;

extern float psr(float **,int,int,int,int);
printf("Entering findpsr2\n");fflush(stdout);

maxpsr = -100000.0;
for(r=PAD; r < 2*p->Accrows +PAD ;r++) for(c=PAD; c < 180+PAD;c++)
{

pssr=p->Acc1[r][c];
if(pssr > maxpsr)
{

maxpsr = pssr;
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maxpsrrow = r;
maxpsrcol = c;

}
}
printf("Maximum Acc value of %f found at row = %d (rho = %d) theta = %d\n",

maxpsr,
maxpsrrow, maxpsrrow-(p->Accrows)-PAD,maxpsrcol-PAD); fflush(stdout);

return maxpsr;
}
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C.9 printmatrix

This is a debugging utility, used only in this program

static void printmatrix(double **m,int nr,int nc)
{

int row,col;
for(row = 1;row <= nr;row++)
{

for(col=1;col <=nc;col++)
printf("%f ",m[row][col]);

printf("\n");
}

}
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C.10 Initialization

The initialize function sets things up

/*============================================================*/

/* initialize */

/*============================================================*/

The initialize function sets up everything that is required it reads the input image file and computes
an accumulator

int initialize(char *filename,struct param *p)
{

IFSIMG input;
int len[4];
int displayindex;

int CreateIFSDisplayWindow(IFSIMG,float,int,int);
extern void copyandconvert(float **, IFSIMG);
int ifsany2any(IFSIMG,IFSIMG);
int f;
float ** SetUpAccptr(IFSIMG);
float **MakeAccumulator(int);
extern void testaccindexing(struct param *);
float makekernel(float *kernel,int kernelradius);

// printf("Entering Initializa\n");fflush(stdout);

Compute the β matrix which is used to estimate the position of the peak more accurately in the
accumulator. this is accomplished as follows: Assume there are n possible orientations which can be
estimated by an orientation-sensitive Gabor function. Further, assume the directions of maximum
sensitivity of each of those Gabor functions are defined by direction vectors b1, b2, ..., bn is projected
onto each of these direction vectors to produce a projection µi. The unknown gradient vector G is
projected onto each direction vector obeying

µi = bTi G

Collect all the direction vectors into a single matrix B = [b1, b2, ..., bn]. Then the projection of all
the points can be collected into a single vector equation

BTG = µ

. Which can be solved for a minimum-squared-error estimate of G by (showing matrix sizes)

G2×1 = (BBT )−1
2×2B2×nµn×1
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In the following code, the matrix (BBT )−1B ≡ β is computed and will be stored in the structure p
This implementation has not been recently tested. It should work.

{
double **B,**Btrans,**BBtrans,**BBtransinv;

dmatrix is rows, columns, in that order

B=dmatrix(1,2,1,p->numorientations);
Btrans=dmatrix(1,p->numorientations,1,2);
BBtrans= dmatrix(1,2,1,2);
BBtransinv=dmatrix(1,2,1,2);
p->beta = dmatrix(1,2,1,p->numorientations);

There may be some confusion with indices below. I use matrices indexed 1...n, whereas in the other
parts of the program, indices range from 0 ... n-1.

for(f = 0; f < p->numorientations;f++)
{

B[1][f+1] = cos(p->deltatheta* f);
B[2][f+1] = sin(p->deltatheta* f);

}

#ifdef TESTB1
B[1][1] =1;
B[2][1] =0;
B[1][2] =0;
B[2][2] =1;
B[1][3] =0;
B[2][3] =0;
B[1][4] =0;
B[2][4] =0;

B[1][5] =0;
B[2][5] =0;

B[1][6] =0;
B[2][6] =0;

B[1][7] =0;
B[2][7] =0;

B[1][8] =0;
B[2][8] =0;

B[1][9] =0;
B[2][9] =0;
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B[1][10] =0;
B[2][10] =0;
B[1][11] =0;
B[2][11] =0;

B[1][12] =0;
B[2][12] =0;
B[1][13] =0;
B[2][13] =0;
B[1][14] =0;
B[2][14] =0;

B[1][15] =0;
B[2][15] =0;
B[1][16] =0;
B[2][16] =0;
B[1][17] =0;
B[2][17] =0;
B[1][18] =0;
B[2][18] =0;

#endif
transpose(B,2,p->numorientations,Btrans);

#ifdef TESTB
printf("The matrix Btrans is\n");fflush(stdout);

printmatrix(Btrans,p->numorientations,2);
#endif

ifsmatmult(B,Btrans,BBtrans,2,p->numorientations,p->numorientations,2);
#ifdef TESTB

printf("THe matrix BBtrans\n");fflush(stdout);
printmatrix(BBtrans,2,2);

#endif

ifsinverse(BBtrans,BBtransinv,2);
#ifdef TESTB

printf("BBransinv is\n");fflush(stdout);
printmatrix(BBtransinv,2,2);

#endif

ifsmatmult(BBtransinv,B,p->beta,2,2,2,p->numorientations);
#ifdef TESTB

printf("beta is\n");fflush(stdout);

printmatrix(p->beta, 2,p->numorientations);
#endif

}
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p->retina=ifspin(filename);
p->infilename=filename;
if(p->retina == 0)
{

printf("Could not read input file %s\n",filename);
exit(-1);

}
if(p->retina->ifsdims != 2)
{

printf("\nThis program can only process two-dimensional images\n");
printf("You can extract a 2D frame from a 3D image using ChooseFrame\n");
exit(0);

}
len[0]=2;
len[2]=p->nr = ifsdimen(p->retina,1);
len[1]=p->nc = ifsdimen(p->retina,0);
if(p->retina->dtype != IFST_32FLT)
{

int status;
p->xnm1 = ifscreate("float",len,IFS_CR_ALL,0);
status=ifsany2any(p->retina,p->xnm1); // create a floating version of the input

// printf("any2any returned %d\n",status);fflush(stdout);
}
else
{

p->xnm1 = ifscreate("float",len,IFS_CR_ALL,0);
}

// printf("Init:0.2, len=%d %d %d\n",len[0],len[1],len[2]);fflush(stdout);

The output file is set up in such a way that the data will not be compressed. Thus, if it must be
read multiple times, it will be fater to , it will be fast

p->retina->comp=0;

ifspot(p->retina,"retina.ifs"); // save the uncompressed retina image

// create the rest of the images

p->xn=ifscreate("float",len,IFS_CR_ALL,0);
p->y=ifscreate("float",len,IFS_CR_ALL,0);
p->iy=ifscreate("u8bit",len,IFS_CR_ALL,0);
p->temp1=ifscreate("float",len,IFS_CR_ALL,0);
p->temp2=ifscreate("float",len,IFS_CR_ALL,0);
len[0]=3;

len[3]=p->numorientations;

// create a convolution kernel to be applied later to blur the accumulator
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{
int eye,jay;
int inducks;
p->kernelradius = 1;// a radius of 1 produces a 3x3
p->kernel = (float *)malloc((p->kernelradius *2+1) * (p->kernelradius * 2 +1) * sizeof(float));
makekernel(p->kernel,p->kernelradius);

printf("the radius %d convolution kernel is :\n",p->kernelradius);
inducks=0;
for(eye=0;eye<1+2*p->kernelradius;eye++)
{

for(jay=0;jay<1+2*p->kernelradius;jay++) printf("%f ",p->kernel[inducks++]);
printf("\n");

}
}
fflush(stdout);
p->v=ifscreate("float",len,IFS_CR_ALL,0);

create the accumulator

first, figure out how many rho values there are Accrows does NOT include padding

p->Accrows= sqrt(len[1] * len[1] + len[2]* len[2]);
// printf("Initializing Accrows to %d\n",p->Accrows);

len[0]=2;
len[1]=180;
len[2]=p->Accrows * 2;// allocation for negative rho and padding will be done in MakeAccumulator
p->Acccols = len[1];

p->Acc1=MakeAccumulator(p->Accrows);// accrows does not include the doubling of vertical size or padding
p->Acc2=MakeAccumulator(p->Accrows);// that is added in the make

Construct an ifs image which is big enough to hold the entire accumulator including the padding

len[0]=2;len[1]=180 + 2 * PAD; len[2] = 2 * p->Accrows + 2 * PAD;
p->iAcc=ifscreate("u8bit",len,IFS_CR_ALL,0);

We will want to display the image, reconstructed from the Hough so we will create an image to
store those results First, figure out how many rows. Thats easy we will use the number of rows in
the accumulator. Thats more than necessary, but who cares?

len[2]=p->Accrows * M_SQRT2 + 1.0;
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Lets make the number of columns the same number

len[1] = len[2];
p->reconstructed=ifscreate("u8bit",len,IFS_CR_ALL,0);
p->tempacc=ifscreate("float",len,IFS_CR_ALL,0);

copyandconvert(p->Acc1,p->iAcc);
p->display1 = CreateIFSDisplayWindow(p->iAcc,1.0,0,0); // set up display of Acc

The second display is used to display the reconstructed lines

p->display2 = CreateIFSDisplayWindow(p->reconstructed,1.0,300,0);

the RecordFlag used below identifies whether or not to save the accumulator to a (rather large)
diskfile

if(p->RecordFlag == 1)
{

len[0]=3;len[1]=180;len[2]=2*p->Accrows;len[3]=LASTITERATION-1;
p->savedacc = ifscreate("float",len,IFS_CR_ALL,0);

}

// p->Yimg = CreateIFSDisplayWindow(p->retina,1.0); // set up display of Acc
// printf("Returned from create\n");fflush(stdout);

// test accumulator
// testaccindexing(p);

return p->display1;
} // done with function initialize
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C.11 Set up connections of Axons

An array of axons is modeled by a triply-indexed array of pointers to accumulator cells. Each
pointer models a single axon. The three indices are row, column, and orientation. This function is
not implemented at this release

#ifdef AXONARRAY
/*===================SetUpAxonArray========================*/
/* create an array of pointers to the accumulator */
SetUpAxonArray(struct param *p)
{

float theta,dtheta,cth,sth;
int f;

dtheta = M_PI / (p->numorientations * p->df); // how many frames is also how many angles
for(f=0;f < p->numorientations;f++)
{

theta=f*dtheta;
cth = cos(theta); sth = sin(theta);
for(r=p->nr;r>=0;r--)for(c=p->nc;c>=0;c--)
{
pointer = p->v->ifsptr +

}
}

}
#endif
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Figure C.1: The input image is high-pass filtered producing an output image y, which fades, the
decay rate depends on the sampling time and the constant b1. Here, ao = 1, a1 = −1, and b1 = .95

C.12 High Pass Filtering

C.12.1 Dynamic Response of the input system

The dynamic response of the visual system is nicely summarized by Martinez-Conde et al. [47]:
“Even our own visual system can detect stationary objects only because the image projected onto
our retinas are never stationary for long.” That a stationary image fades is a phenomenon referred
to as “visual fading.” [49, 20]. The fact that scenes we observe do not fade from view is commonly
attributed to either head motion of microsaccadic motion of the eyes themselves.
In this project, we do not attempt to model microsaccadic motion, and therefore must allow constant
images to fade. In the current version of the program, we also are not using camera input, but
instead use a single file as input. The creation time of that file, named “img.ifs,” is polled each
iteration of the program, and the file is read only if it has changed. If change has occurred, it is
read into an input buffer named x.
Whether read from disk or not, the input image x is subjected to a simple recursive high pass filter

yn = aox
n − a1x

n−1 + b1y
n−1 , (C.1)

producing output y, as illustrated in Figure C.1. The input processing, and the formation of the
fading by high pass filter is performed in blocks I and II of the flow chart in Figure ??.
In block I of that figure, the assignment xn−1 ← xn is denoted xnm1 :== xn, and is implemented
using almost no computing resources by simply observing that these are not images but pointers
to images, and swapping them in the following way:
temp = xnm1;
xnm1 = xn;
xn = temp;

/*=========================================================*/

/* HighPassFilter */
/* returns 0 if the output image is null */
/*=========================================================*/
int HighPassFilter(struct param *p,int iteration)
{

void zap(IFSIMG);
int ifnullimage(IFSIMG,float);
switch(iteration)
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{

case 1:
zap(p->y);zap(p->xnm1);flcp(p->retina,p->xn); // initialization
return 0;
break;

case 2:
flcp(p->xn,p->y);
flcp(p->xn,p->xnm1);
flcp(p->retina,p->xn);
if(ifnullimage(p->y,0)) return 0;
break;

default:
flmults(p->y,p->temp1,0.9); // fade by this much
flcp(p->temp1,p->y);
if(ifnullimage(p->y,0)) {printf("defalt\n");return 0;}
break;

}
return 1 ;

}
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C.13 Non Maximum Suppression

function to suppress edge responses which are not maxima

/*=========================================================*/

/* nms */

/*=========================================================*/
void nms(IFSIMG inimg,float angle)
{

int r,c;
float r1,c1,r2,c2;
int nr,nc,ir1,ic1,ir2,ic2;
float d,v,dmax,max;

extern double mysin(int), mycos(int);

nr = ifsdimen(inimg,1);nc = ifsdimen(inimg,0);
for(r = 3;r< nr-3;r++)for(c = 3;c< nc-3;c++)
{

v = ifsfgp(inimg,r,c);
if(v > 20.0)
{

max = 0.0;
for(d=-2.0;d <= 3.0;d+=1.0)
{

r1 = r+ d* sin(angle);c1=c + d*cos(angle);
ir1=r1;ic1=c1;
v=ifsfgp(inimg,ir1,ic1);
if(v > max)
{

max=v;
dmax = d;

}

}
for(d=-2.0;d <= 3.0;d+=1.0) if(d != dmax)
{

r2 = r+ d* sin(angle);c2=c + d*cos(angle);
ir2=r2;ic2=c2;

// printf("nms:suppressing %d %d because %f < %f\n",ir2,ic2,ifsfgp(inimg,r2,c2),max);
ifsfpp(inimg,r2,c2,0.0);
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}
}

}
}
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C.14 Calling the Gabor Edge Detectors

The Gabor filter, applied to a point xy in an image, computes

g(x, y;λ, θ, ψ, σ, γ) = exp
(
−x
′2 + γ2y′2

2σ2

)
cos
(

2π
x′

λ
+ ψ

)
Here, the Gabor is implemented by using the ifs function flGabor The normal to the line has the
angle theta, not the line itself A 2D Gabor kernel implemented by flGabor is mathematically
defined as: G(x, y) = exp

[
−x′2+γ2y′2

2σ2

]
cos
(

2π x
′

λ

)
where λ is the variable wavelength and γ is the

variable aspect where

x′ = x cos θ + y sin θ (C.2)
y′ = −x sin θ + y cos θ (C.3)

The parameters involved in the construction of a 2D Gabor filter are:

• The variance of the gaussian function

• The wavelength of the sinusoidal function

• The orientation of the normal to the parallel stripes of the Gabor function

• The spatial aspect ratio specifies the ellipticity of the support of the Gabor function. For ,
the support is circular. For the support is elongated in the orientation of the parallel stripes
of the function.

Note that flGabor does not give the user the options of selecting ψ, and therefore this version of
flGabor is centered around the center (since it is a cosine function. It will therefore select lines, not
edges.

/*=========================================================*/

/* Gabors */

/*=========================================================*/
int Gabors(IFSIMG y,IFSIMG v, float stddev,float wavelength,float aspect)
{

int i; //counter
int len[3];
int nf,nr,nc; //number of output frames
int nfloats; //number of floats in a single frame
float *oldifsptr; //save the old ifsptr
float *fptr; // temportary pointer to a float
double dtheta; // increment theta
int frame;
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extern int myflGabor(IFSIMG,IFSIMG,float,float,float,float);

char newname[32];

len[0]=2;

nf = ifsdimen(v,2); // get number of frames in
len[1]=nc=ifsdimen(v,0); len[2]=nr=ifsdimen(v,1);
nfloats= nr*nc;
dtheta = M_PI/nf;
oldifsptr=(float *)v->ifsptr; //remember the old ifsptr
fptr =oldifsptr;
for(i=0;i<nf;i++)
{

float angle;
angle = dtheta*i;
v->ifsdims=2;
v->ifsptr = (char *)fptr;

The first argument is the input ifs image. The second argument is the 3d Gabor output image. The
output image has 180/stuff-¿degreespersample frames, on for each angle. The third argument is the
standard deviation of the Gaussian of the filter. the fourth argument is an angle of the gradient,
in radians. An angle of 0 will be maximally sensitive to vertical edges. The final argument is not
used, but is retained for compatibility with the ifs flGabor function.

#ifdef EDGEGABOR
myflGabor(y,v,stddev,dtheta * i, wavelength);

#else
flGabor(y,v,stddev,dtheta * i, wavelength,aspect);

#endif
// flabsolute(v,v); // take magnitude of Gabor
// nms(v,dtheta*i); // do nonmaximum suppression on the edge image

fptr += nfloats ;

}

//restore the 3d nature of the image
v->ifsptr = (unsigned char *)oldifsptr;
v->ifsdims=3;
ifspot(v,"Gaborout.ifs");

// debug it
#ifdef DEBUG1

for(frame=0;frame < p->numorientations;frame++)
{

float max;int rmax,cmax,r,c;
printf("looking at frame %d\n",frame);
max = -10000.0;
for(r=0;r < nr;r++)for(c=0;c<nc;c++)
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{
// printf("Reading %d %d\n",r,c);

if(ifsfgp3d(v,frame,r,c) > max)
{

max = ifsfgp3d(v,frame,r,c);
rmax = r;cmax =c;

}
}
printf("Max at row %d col %d in frame %d\n",rmax,cmax,frame);
printf("frame %d row %d col %d = %f %f %f %f %f\n",frame,rmax,cmax,

ifsfgp3d(v,frame,rmax,cmax -2),
ifsfgp3d(v,frame,rmax,cmax -1),
ifsfgp3d(v,frame,rmax,cmax),
ifsfgp3d(v,frame,rmax,cmax +1),
ifsfgp3d(v,frame,rmax,cmax +2)
);fflush(stdout);

}
exit(0);

#endif

return 0;
}

93



C.15 Simulation of the Accumulator

The high-pass filtered image, y, provides input to an edge detection process simulating the simple
cells of area V1. Each simple cell produces a number of outputs, one for each orientation sensitivity.
Thus for each point in the image, a vector of responses is produced, and each position/orientation
pair simulates a single axon to a single neuron in the accumulator. The image denoted as V in the
flow chart is therefore a vector valued function:

v(r, c)

Even though we now have a three-dimensional data structure, it is convenient to continue to call
this an “image,” and the elements “pixels.”
In the biological accumulator, all S1 cells are simultaneously active, and therefore all cells in the
accumulator may receive concurrent stimulation. In computer simulation however, we are forced
to scan over v. The simulation process is accomplished by the following algorithm:

f o r ( row=0;row< nr ; row++)
f o r ( co l −0; co l< nc ; c o l++)
f o r ( theta = 0 ; theta < k ; theta=theta+dtheta )
{

t1=Gabor ( row , co l , theta )
p = p o i n t e r t o ( row , co l , theta )
d( rho , theta )=IncrementAccumulatorNeighborhood (p , t1 )
{

The pointers are computed in the initialization phase of the simulation. Each pointer simulates a
single axon from the S1 cell at (row, col) with orientation sensitivity theta. In a biological neuron,
the accumulation process occurs as a result of transfer of extracellular sodium into the cell from
numerous synaptic inputs. Here we assume the presence of an interneuron which accumulates these
inputs and produces the signal d, which will, in turn provide stimulus to the accumulator. This is
simulated by simple addition in the function IncrementAccumulatorNeighborhood, which adds the
signal t1 to the interneuron pointed to and, in a Gaussian-weighted way, to the neighborhood of
that interneuron.
This process occurs in blocks III-IV of the flow chart.

/*=========================================================*/

/* Accumulate */

/*=========================================================*/

In the Accumulate function, the function is passed an argumen specifying which of several options
to use for accumulation

int Accumulate(IFSIMG v, float ** Acc,struct param *p,int mode)
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{
double dtheta;
double theta;
int i,j;
int c; // loop over columns
int r; // loop over rows
int f; // loop over frames (same as orientations
int nr;// number of rows
int nc; // number of cols
int nf;
int flatflag;
int negflag;
int irho; // integer version of rho
float vtemp; //place to store a temporatry
double sth, cth; // place to remember cos and sin of theta
double rho; //the rho in the equation of a st line
float y1,y2,y3,a,b,cee,xhat,yhat;
int x1,x2,x3;
float temp2;
float *mu;
float sum,average;
double Gx,Gy;
double mp1,mp2,sp1;
int fmp1,fmp2,itheta;
float mu180[180];
void FuzzAccumulator(struct param *);
void incacc(float ,float ** , int , int,int ,struct param * ,int);
void blurmu(float *,float *, struct param *p);
extern void Acc2ifs(float **,char *,int);

mu=(float *)malloc(p->numorientations * sizeof(float));
nf = ifsdimen(v,2); // v is a 3D image
nr = ifsdimen(v,1); // v is a 3D image
nc = ifsdimen(v,0); // v is a 3D image

// ifspot(p->v,"checkv.ifs");
for(r=0;r < nr;r++)

for(c=0;c< nc;c++)
{

The following code estimates uses several different appraoches to incrementing the accumulator,
given the 18 (or so) measured values at each point r, c.
First, extract all 18 measurements and find the average.

sum = 0.0;
for(f=0;f< p->numorientations;f++)
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sum += mu[f];
average = sum / p->numorientations;

if the Q switch is defined, rescale the values

#define Q
#ifdef Q

for(f=0;f< p->numorientations;f++)
{

mu[f] = mu[f] * mu[f] / average;
}

#endif

Now find the maximum and minimum

mp1= 0.0;fmp1=0;mp2=0;fmp2=0;sp1= 1000000.0;
for(f=0;f< p->numorientations;f++)
{

mu[f]= ifsfgp3d(v,f,r,c); // get Gabor value for this pixel
if(mu[f] > mp1){mp1=mu[f]; fmp1 = f;} //remember biggest
if(mu[f] < sp1) sp1=mu[f]; // also remember smallest

}

#ifdef DEBUG
if(r == c && mp1 != 0.0)
{

printf("Mu is \n");
for(f=0;f<p->numorientations;f++) printf("%f ",mu[f]);

}
if (r == c&& mp1 != 0.0) printf("mp1=%f at %d\n",mp1,fmp1);

#endif

for(f=0;f< p->numorientations;f++)
{

if(f != fmp1 && mu[f] > mp2){mp2=mu[f]; fmp2 = f;}
}

// if(r==115 && c == 115) printf("mp1 is %f",mp1);

now, fmp1 is the angle of the brightest and fmp2 is the second brightest

// if(r == 115 && c == 115)printf("jumping to mode 5\n");
switch (mode)

{

Version 0 is the classical HT. At each point, the entire accumulator is incremented. First, the
maximum strength of the response is tested.
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Note that theta ranges from -PAD to 180+PAD degrees. This is because the accumulator is
deliberately oversized to allow smoothing.

case 0:

if(mp1 > 5.0)
for(itheta = -PAD; itheta< 180+PAD;itheta++)

{
incacc(mp1,Acc,r,c,itheta,p,1);

}

break;

This mode uses the p-¿numorientations measurements of directional derivitive magnitude and then
linearly interpolates them over a total of 180 1-degree measurements. Those are then used to call
incacc the interpolation is used to take account of the fact that we have only p-¿numorientations
directional filters, not 180.

case 1:
{

if(mp1 > 5.0)
{

blurmu(&mu[0],&mu180[0],p);

for(i=0;i<180;i++)
incacc(mu180[i],Acc,r,c,i,p,1);

for(i=-PAD;i<0;i++)
incacc(mu180[180+i],Acc,r,c,i,p,1);

for(i=180;i<180+PAD;i++)
incacc(mu180[180-i],Acc,r,c,i,p,1);

}
}

break;

mode 2 which uses the B matrix to make a mean-squared estimate gradient direction, using all
(p-¿numorientation) measurements

case 2:
{

Don’t forget, only NUMORIENTATIONS measuremnts have been made Now multiply by the Beta
matrix to get the estimate of the gradient
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Gx=Gy=0.0;
for(i=0;i < p->numorientations;i++)
{

Gx += p->beta[1][i+1] * mu[i];
Gy += p->beta[2][i+1] * mu[i];

}

Now that we have the gradient, its angle is from the arctangent. The arctan will return numbers
between -pi and pi and so we have to convert to degrees between zero and .

theta=atan2(Gy,Gx);

We are operating in only the range 0 to 180 degrees, so if we add π to an angle, we must change
the sign of rho. That is accomplished by setting negflag before calling incacc.

if(theta < 0) {theta += M_PI; negflag = -1.0;}else negflag = 1.0;
theta *= RAD2DEG; // convert to floating version in degrees
itheta = theta+0.5; //integerize and round

increment acc using value from Gabor at this angle

// printf("Accumulate2: found an angle of %d\n",itheta);
incacc(mu[itheta/p->degreespersample],Acc,r,c,itheta,p,negflag);

}//end of if statement
break;

Mode 3 uses only a single direction, the direction of the maximum responding single cell

case 3:
{

if(mp1> 5.0)
{

for(i=0;i < p->degreespersample;i++)
incacc(mp1,Acc,r,c,fmp1 * (p->degreespersample) +i,p,1.0);

}
}
break;

Mode 4 takes the (p-¿numorientations) mu values and increments the accumultor at a point corre-
sponging to each of by them an amount proportional to its strength.

case 4:
if(mp1>20.0)
{

for(i=0; i < p->numorientations;i++)
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for(j = 0;j<p->degreespersample;j++)
{

itheta = i * p->degreespersample + j;
incacc(mu[i],Acc,r,c,itheta,p,1.0);

}
}
break;

Mode 5 finds the brightest direction and estimates the direction as the weighted average of the max
and its two nearest neighbors

case 5:

if(mp1 > 10.0 && (mp1- sp1)>0.05)
{

We already know the biggest element of mu. That is at fmp with magnitude mp. So now look for
the neighboring one

// if(r == 115 && c == 115)
// {
// printf("Accumulateafterif:m1=%f, fmp = %d\n",mp1,fmp1);fflush(stdout);
// exit(0);
// }

if(fmp1 == 0) x1 = p->numorientations-1;else x1 = fmp1-1;
if(fmp1 == p->numorientations-1) x3 =0;else x3 = fmp1+1;
x2=fmp1;
y1=mu[x1];y2=mp1;y3=mu[x3];
if((y1==y2) && (y2==y3)) flatflag = 1;
else flatflag=0;

Now, we fit a parabola to these three points. Let x2=0, then x1 = -r x3=r the three quadratic
equations become

y1 = r2a− rb+ c (C.4)
y2 = c (C.5)

y3 = r2a+ rb+ c (C.6)

if there are r degrees/sample with solution shown below

if (flatflag == 0)
{

cee=y2;
b=(y3-y1)/(2.0* p->degreespersample);
a=(y3 - (p->degreespersample)*b-cee)/(p->degreespersample * p->degreespersample);
xhat = -b/(2.0 * a);
yhat = a * xhat * xhat +b * xhat +cee;
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if(xhat < 0.0 && fmp1 == 0 )
xhat = xhat+180.0;

else
xhat = xhat + p->degreespersample* fmp1;

itheta = xhat +0.5;
}
else
{

itheta = p->degreespersample * x2;
yhat = 0.0;

}
incacc(yhat,Acc,r,c,itheta,p,1);

}//end of if statement

break;

case 6 finds the brightest two values and interpolates between them

case 6:
if(mp1 > 5.0)

{
float p1,p2,ExpectedVal;
p1=mp1/(mp1+mp2);
p2=mp2/(mp1+mp2);

// if(c==196) printf("p1 = %f at theta = %d p2=%f at theta=%d\n",
// p1,fmp1,p2,fmp2);

if(fmp1 == 0 && fmp2==p->numorientations-1)
fmp2 = p->numorientations;

if(fmp1 == p->numorientations-1 && fmp2==0)
fmp1 = p->numorientations;

ExpectedVal = fmp1 * p1 + fmp2 * p2;
// itheta = ExpectedVal * 10.0;

itheta = ExpectedVal * p->degreespersample;

// if(r == c)
// printf("Calling incacc with %f,%d %d %d\n",
// mp1,r,c,itheta);

incacc(mp1,Acc,r,c,itheta,p,1);
}

break;
default:printf("unrecognized accumulation mode\n");

exit(-1);
}//end switch

}// end loops over r and c
// Acc2ifs(p->Acc1,"Beforefuzz.ifs",2*p->Accrows);

// FuzzAccumulator(p);// t
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free (mu);
}// end of Accumulate
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γ φ θ

ρ

Figure C.2: Definitions of angles. The bold line is the line of interest. It sits at a normal distance ρ
from the origin. The angle θ is measured by the Gabor function simulating the orientation-sensitive
components of S1 cells.

C.16 incacc

This function simulates activating a single neuron by the output of a single v cell The choice of
theta has already been determined. Theta measured in degrees The familiar formulation is initially
used for the equation of a straight line,(see figure C.2).

ρ = x cos γ + y sin γ

where ρ is the distance from the origin along a normal to the line, and γ is the angle that the
normal (not the line itself) makes with the x axis.

/*===============================================================================*/

/* incacc */

/*===============================================================================*/

void incacc(float v,float ** Acc, int r, int c, int igamma,struct param *p,int negflag)
{

int irho;
float rho,value,accvalue;
extern double mysin(int), mycos(int);
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Convert γ to degrees and integerize

rho = c * mycos(igamma) + r * mysin(igamma);
rho = rho * negflag;
irho = (rho +0.5);
irho += p->Accrows; //since rho could be negative, shift it.
irho += PAD; // set the 0 0 point correctly

// if(v >1.0 && (c == r))
// {
// printf("incacc:%f %d %d %d",v,r,c,igamma);
// printf("irho = %d itheta = %d\n",irho,igamma);
// }

/* now irho is in array coodinates */

/* check valid values */
if(irho < -PAD ){printf("neg rho %d %d\n",irho,igamma);fflush(stdout);exit(-1);}
if(irho > 2*p->Accrows + 2 * PAD) {printf("incacc:rho too big Accrows is %d %d %d\n",p->Accrows,irho,igamma);fflush(stdout);exit(-1);}
if (igamma < -PAD ){printf("gamma neg %d %d\n",irho,igamma);fflush(stdout);exit(-1);}
if( igamma> (180+PAD)){printf("gamma of %d is too big %d\n",igamma,irho);fflush(stdout);exit(-1);}

// if(c==196 && v > 26.0)
// printf("float coordinates are %d %d %d %d\n",r,c,irho,igamma+PAD);

accvalue = Acc[irho][igamma + PAD];
// if(c==r) printf("incacc: updating accumulator cell %d %d %f \n",irho,(igamma+PAD),accvalue);

Acc[irho][igamma+PAD] = v+accvalue;
// if(c==r) printf("incacc: updated accumulator cell %d %d is %f \n",irho,(igamma+PAD),Acc[irho][igamma+PAD]);
// printf("Leaving incacc..");fflush(stdout);

}
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C.17 Low-pass filtering the Accumulator

The function FuzzAccumulator will blur the accumulator. The result will be stored in one of the
accumulator buffers, and then pointers will be swapped to avoid copying.

//====================================================*/

// FuzzAccumulator */
// apply a low-pass fileter to the Acc */
/* result will be stored in p->Acc2, then the pointers*/
/* swapped */
/* the accumulators are arrays of floats, so they have*/
/* to be turned into ifs images. Fortunately, that just*/
/* requries some pointer manipulation */
/*====================================================*/

void FuzzAccumulator(struct param *p)
{

int r,c,nr,nc,nonmax;
int i,j;
int inducks;
IFSIMG hdr1,hdr2;
float **tmpimg;
float sum;
int len[3];
int passes;
float *a1ptr,*a2ptr;
extern void Acc2ifs(float **,char *,int);
extern void saveacc2d(float **,struct param *,int);

// printf("Enteringing fuzz\n");fflush(stdout);

// blur the accumulator Acc1 into Acc2 using a kxk kernel
for(r=PAD;r < 2*p->Accrows + PAD;r++)

for(c=PAD; c < 180 +PAD;c++)
{

sum =0.0;inducks=0;
for(i=-p->kernelradius;i<=p->kernelradius;i++)

for ( j=-p->kernelradius;j<=p->kernelradius;j++)
{

sum += p->Acc1[r+i][c+j] * p->kernel[inducks++];
// printf("Fuzz: sum=%f\n",sum);fflush(stdout);

104



}
p->Acc2[r][c]=sum/inducks;

}

accumulator 2 is the blurred accumulator. Make it acc1

tmpimg = p->Acc1;p->Acc1 = p->Acc2; p->Acc1=tmpimg;

Now the blurred accumulator is in Acc1.

Acc2ifs(p->Acc2,"BeforeBlur.ifs",2*p->Accrows);
Acc2ifs(p->Acc1,"AfterBlur.ifs", 2*p->Accrows);

// saveacc2d(p->Acc2,p,2);// 2 means show padding too

#ifdef NONMAX
// run nonmaximum suppression on the accumulator

for(passes = 0;passes<2;passes++)
for(r = PAD;r<2*(p->Accrows)+PAD;r++)

for(c=PAD; c < 180 + PAD;c++)
{

{
nonmax=0;
for(i=-2;i<=2;i++)
{

for(j=-2;j<=2;j++)
{

if(p->Acc2[r][c]< p->Acc2[r+i][c+j])
{

nonmax = 1;
break;

}
if(nonmax) break;

}
}
if(nonmax) p->Acc2[r][c] = 1.0;

}
}

// find how many peaks there are
for(r = PAD;r<2*(p->Accrows)+PAD;r++)

for(c=PAD; c < 180 + PAD;c++)
{

if(p->Acc2[r][c] >= 3000.0)
printf("Acc of %f at %d (%d) %d\n",p->Acc2[r][c],r,r-p->Accrows-PAD,c);fflush(stdout);

}
#endif

// swap the images Acc1 and Acc2

105



tmpimg = p->Acc1;p->Acc1 = p->Acc2;p->Acc2=tmpimg;
// printf("Leaving fuzz\n");fflush(stdout);

}
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C.18 Making a Gaussian blurring kernel

/* */
/*===================================================*/

/* makekernel */

/*===================================================*/
/* function to make a convolution kernel */
/* */
float makekernel(float *kernel,int kernelradius)
{

float sigma,sigmasq,rsq,sum;
int index;
int i,j;
index =0;sigma=kernelradius;sigmasq = sigma*sigma;
sum=0;
for(i=-kernelradius;i <=kernelradius;i++)

for(j=-kernelradius;j <=kernelradius;j++)
{

rsq = i*i + j*j;
kernel[index++]=exp(- rsq/sigmasq) / (2.0 * M_PI * sigma);
sum += kernel[index-1];

}
for(index=0;index<(2*kernelradius+1) *( 2*kernelradius+1); index++)

kernel[index]=kernel[index] / sum;
// printf("makekernel: sums to %f\n",sum);

return sum;
}
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C.19 Set an image to all zeros

Because the program may run for a long time, it is necesary to sometimes set an ifs image to all
zeros.

/*===================================================*/

/* zap */

/*===================================================*/
/* function to set an */
/* ifsimage to all zeros */
void zap(IFSIMG z)
{

char *ptr;
register int i;
int numbytes;

numbytes=ifsdimen(z,0) * ifsdimen(z,1) * z->ifsbpd;
ptr=z->ifsptr;
for(i=numbytes-1;i>=0;i--)

*ptr++ = 0.0;

}
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C.20 Initializing an Accumulator

Since an accumulator is a pointer to a vector of pointers to floats, they cannot be zapped with the
ifs zap funtion above.

/*===================================================*/

/* zapacc */

/*===================================================*/
/* function to set an accumulator */
/* to all ones. */
void zapacc(float **z,struct param *p)
{

float *fptr;
register int i;
int numpixels;
int nr,nc,r,c;
numpixels= (180 + 2*PAD) * (2*p->Accrows + 2*PAD);
fptr=&z[0][0];
for(i=numpixels-1;i>=0;i--)

*fptr++ = 1.0;

}
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C.21 Disk reread

Reads an image from disk if the image has already been read once.

/*===================================================*/

/* ifsreread */

/*===================================================*/
/* reads a file from disk into an exisitng image */
/* note: THIS ONLY WORKS IF THE IMAGE IS UNCOMPRESSED*/

int ifsReRead(char *filename, IFSIMG img)
{

// int filesize;
// FILE *fp, *fopen();

int nr,nc,size;
IFSIMG in;

nr = ifsdimen(img,1); nc = ifsdimen(img,0);
// size = nr * nc * img->ifsbpd;
// printf("reread: %d rows %d cols equals %d bytes\n",nr,nc,size);

// fp = fopen(filename,"rb");
// if(fp == NULL)
// {
// printf("Cannot read file named %s\n",filename);
// exit(-1);
// }
// fseek(fp,512,SEEK_CUR);
// fread((img+512), size, 1, fp);
// // memcpy((img+512),fp,size);
// // img->ifsptr=(char *)(img + 512);
// fclose(fp);

/* read the new input image */
in = ifspin(filename);
memcpy(img->ifsptr,in->ifsptr,size);

ifsfree(in,IFS_FR_ALL);

// ifspot(img,"new_img.ifs");

return 0;
}
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C.22 Writing a file

Debuging function not currently used

void writefile(IFSIMG y,char * prefix,int index)
{

char name[32];
sprintf(name,"%s%d.ifs",prefix,index);
printf("wriitng to the file named %s\n",name);
ifspot(y,name);

}
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C.23 Test for image null

/* */
/* ifnullimage */

int ifnullimage(IFSIMG f,float value)
{

int nr,nc,numpixels,i;
float *ptr;
ptr = (float *) f->ifsptr;
nr =ifsdimen(f,1);
nc =ifsdimen(f,0);
numpixels = nr * nc;

// printf("ifnullimage: %d rows, %d columns, %d floats\n",nr,nc,numpixels);
for(i=0;i < numpixels;i++)

if(*ptr++ != value) return 0;

return 1;
}
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C.24 Clip a floating point image

converts a float image to a float image with values between o and 255 Not used in this version

/*===================================================*/

/* clip */

/*===================================================*/

void clip(IFSIMG a)
{

float *ptr;
int i,n;
n=ifsdimen(a,0) * ifsdimen(a,1);
ptr = (float *)a->ifsptr;
for(i=n-1;i>=0;i--)
{

*ptr=255.0 * 1.0
/
(1.0 + exp(- 0.05 * *ptr));
ptr++;

}
}
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C.25 Blurring the vector of angle measurements

/*===================================================*/

/* blurmu */

/*===================================================*/
void blurmu(float *mu,float *mu180,struct param *p)
{

int i,left,right;
float mul,mur;

// for(i=0;i<170;i++)
for(i=0; i <(p->numorientations-1)*(p->degreespersample);i++)
{

left = (i/(p->degreespersample))*(p->degreespersample);
right = (left+10);
mul=mu[left/p->degreespersample];mur=mu[right/p->degreespersample];

// if(mul > 100 && mur > 100)
// printf("Blumu: l=%d r=%d i=%d mu=%f\n",left,right,i,mu[i]);fflush(stdout);

mu180[i]=0.1 * (mul *(right - i) + mur *(i - left));
}
mul = mu[p->numorientations-1];mur = mu[0];
for(i=(p->numorientations-1)*(p->degreespersample);i<180;i++)
{

mu180[i] = mul * (180-i) + mul * (i-((p->numorientations-1)*p->degreespersample));
// if(mu180[i] > 10000.0)printf("blurmu:mu180[%d] = %f\n",i,mu180[i]);

}

}
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C.26 Display the Inverse Accumulator

/*=====================showHoughinv===================*/
/* first, call Houghinv to get the inverse HT of the */
/* HT we just found */
/* then display it and hold awaiting a keystroke */

int showHoughinv(struct param *p)
{

extern Houghinvsub(float **,IFSIMG, float threshold,struct param *);
extern VideoscaleAcc(float **,float **,struct param *);
int nr,nc;
int displayindex;

int ifnullimage(IFSIMG,float);
int WriteToIFSDisplayWindow(int,IFSIMG,int,float,int,int);

// printf("Entering showHoughinv:\n");fflush(stdout);
#undef TESTHOUGHINV
#ifdef TESTHOUGHINV

zapacc(p->Acc1,p);

p->Acc1[0+p->Accrows+PAD][135+PAD] = 500;

Houghinvsub(p->Acc1,p->reconstructed,500.0,p);

#endif
zap(p->reconstructed); // prepare the output image

Houghinvsub(p->Acc1,p->reconstructed,500.0,p);
if(ifnullimage(p->reconstructed,2.0))
{printf("reconsturcted is empty");exit(0);}

// p->display2 = CreateIFSDisplayWindow(reconstructed,1.0);
WriteToIFSDisplayWindow(p->display2,p->reconstructed,0,1.0,300,0);
ifspot(p->reconstructed,"reconstructed.ifs");

}
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C.27 MakeFake Function only for Testing

/*===================================================*/

/* makefake */

/*===================================================*/
/* creates a synthetic image to test */
void makefake(char *argv1)
{

IFSIMG farble;
int len[3],row;
len[0]= 2;len[1]=256;len[2]=256;
farble=ifscreate("float",len,IFS_CR_ALL,0);
for(row = 50;row < 100;row++)
{

ifsfpp(farble,row,row,200.0); // image with a single diagonal line
ifsfpp(farble,row,100-row,200.0); // image with a single diagonal line

}
ifspot(farble,argv1);

}

C.28 Accumulator Operations Functions

//
// Accoperations.c
//
//
// Created by Wesley Snyder on 6/13/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

#define TRUE 1
#define FALSE 0

C.28.1 Video Scale Accumulator

/*=============================================*/
/* VidscaleAcc */
/* */
/*=============================================*/
/* accepts one accumulator in standared, padded*/
/* format, and video -scales it */
VidscaleAcc(float **a, float **b,struct param *p)
{

int r,c;
float max,min,scale;
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max = 0.0;min=100000.0;
for(r = PAD; r < 2*p->Accrows+PAD;r++)

for(c = PAD; c < 180+PAD;c++)
{

if(a[r][c] > max) max = a[r][c];
if(a[r][c] < min) min = a[r][c];

}
scale = 255.0 / ( max-min);
for(r = PAD; r < 2*p->Accrows+PAD;r++)

for(c = PAD; c < 180+PAD;c++)
b[r][c] = scale*(a[r][c]-min);

}

C.28.2 Mark POints of Interest in Accumulator

/*=============================================*/
/* markacc1 */
/* multiply the point in the accumulator to -1 */
/* so it can be identified later */
/* the marking is done in second acc to avoid */
/* in-place difficulties */
void markacc2(struct param *p,int r,int c)
{

p->Acc2[r+p->Accrows + PAD][c+PAD] =
p->Acc1[r+p->Accrows + PAD][c+PAD] * -1.0;

}
void remarkacc1(struct param *p)
{

int r,c;
for(r=0;r < 2*p->Accrows + 2* PAD;r++)

for(c=0;c < 180 + 2 * PAD;c++)
if(p->Acc2[r][c] <0.0)

p->Acc1[r][c] = p->Acc2[r][c];
}

C.28.3 ShowAccNeighborhood

Shows the 3× 3 neighborhood of a point

void ShowAccNeighborhood(struct param *p,float **Acc,int r, int c)
{

int i,j;
printf("\n***%d %d***\n",r,c);
for(i = -1;i <= 1 ;i++)
{

for(j=-1;j<=1;j++)
printf("%f ",Acc[r + p->Accrows + PAD +i][c+PAD+j]);
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printf("\n");fflush(stdout);
}

}

C.28.4 Determine if a point is a Local Maximum

/*=============================================*/
/* localmax */
/* returns TRUE if the point of interest is a */
/* local maximm */
/* note that r and c are values in rho and theta */
/* so that r ranges from -Accrows to +accrows */
/* this function adds the PAD */
int localmax(struct param *p,float **Acc,int r, int c)
{

int nonmax;
int i,j;
float centervalue;
nonmax=0;
//
centervalue = Acc[r+p->Accrows+PAD][c+PAD];
/*
for(i=r+(p->Accrows)+PAD-1;i<=r+(p->Accrows)+PAD+1;i++)
for(j=c+PAD-1;j<=c+PAD+1;j++)if(!(i==r && j ==c))
if(centervalue <= Acc[i][j])
*/
for(i=-1;i<=+1;i++)

for(j=-1;j<=+1;j++)if(!(i==0 && j ==0))
if(centervalue <= Acc[i+r+p->Accrows +PAD][j+c+PAD])

return FALSE;
// printf("localmaxacc of %f at %d %d ",centervalue,r,c);fflush(stdout);
// printf("which is %f at %d %d\n",centervalue,
// r+p->Accrows+PAD,c+PAD);fflush(stdout);

return TRUE;

}

C.28.5 Make an Accumulator

float ** MakeAccumulator(int rows) // accumulators have 180 columsn (+pad)
{

float *Acc;
float **ptr;
float *p;
int i;
void * malloc(size_t);
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Acc = (float *)malloc((2*rows + 2 * PAD) * (180 + 2 * PAD) * sizeof(float));
ptr = (float **)malloc((2*rows + 2 * PAD) * sizeof(float *));
p=Acc;
for(i = 0; i < 2*(rows + PAD);i++)
{

ptr[i] = p;
p += (180 + 2 * PAD);

}
// for(i =0;i< 180;i++)ptr[rows][i] = 128.0;
// now the value returned by MakeAccumulator can be accessed using [][]
// printf("Returning from MakeAccumulatpor");fflush(stdout);
return ptr;

}

C.28.6 test Indexing

This function is a debugging function.

/*=============testaccindexing=================*/
void testaccindexing(struct param *p)
{

int rows,columns;
int r,c;
float v;
for(r = 0; r < p->Accrows;r++)

for(c = 0; c < 180; c++)
v=p->Acc1[r+PAD][c+PAD];

}
/*==========ReadAccumulator =============*/
/* coordinates range (in degreess) from -pad to 180 + pad*/

float ReadAccumulator(float **A,float rho, int itheta,int rhos)
{

int irho;
void exit(int);
irho = rho +0.5; // round off rho
irho += rhos + PAD;

/* angles are also in degrees, ranging from minus PAD to 180+PAD*/

itheta +=PAD;
if(itheta < 0 ){printf("RD:Invalid Acc address %d\n",itheta);exit(-1);}

return A[irho][itheta];
}
/*==========WriteAccumulator =============*/
/* coordinates range (in degreess) from -pad to 180 + pad*/
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float WriteAccumulator(float **A,float rho, float theta,int rhos,float value)
{

int itheta, irho;
irho = rho +0.5; // round off rho
irho += rhos + PAD;

/* angles are also in degrees, ranging from minus PAD to 180+PAD*/

itheta = theta + PAD;

return A[irho][itheta] = value;
}

C.28.7 Cosine of an Angle Specified in Degrees

/*========================mycos===========================*/
double mycos(int itheta)
/* finds the cosine and sine of an integer described in degrees*/
/* this will later be done by lookup table*/
{

double t;
t=itheta / RAD2DEG;
return cos(t);

}

C.28.8 Since of an Angle Specified in Degrees

/*========================mycos===========================*/
double mysin(int itheta)
/* finds the cosine and sine of an integer described in degrees*/
/* this will later be done by lookup table*/
{

double t;
t=itheta / RAD2DEG;
return sin(t);

}

C.28.9 Convert an Accumulator to an IFS Image

/*===================================================*/
/* */
/* Acc2ifs */

/*===================================================*/
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/* writes an accumulator out to an ifs image */
/* Acc2ifs(floataccumulator,filename */
/* usually used for debugging */
/* display includes the pad */
void Acc2ifs(float **acc, char *filename,int rows)
{

IFSIMG outimg;
int len[3];
int r,c;
float *fptr;
len[0]=2;
len[1]=180 + 2 * PAD;
len[2]=rows+ 2*PAD;
outimg=ifscreate("float",len,IFS_CR_ALL,0);

fptr=(float *)outimg->ifsptr;
for(r = 0;r<len[2];r++)

for(c=0;c<len[1];c++)
*fptr++ = acc[r][c];

ifspot(outimg,filename);
}

/*================saveacc2d===============*/
/* if padflag == 1, make an image showing */
/* the padding, if padflag == 2 dont */
/* otherwise error message */

void saveacc2d(float **acc,struct param *p,int padflag)
{

IFSIMG temp;
int len[3],r,c;
float value;
switch(padflag)
{

case 1:
len[0]=2;len[1]=180;len[2]=2*p->Accrows;
temp = ifscreate("float",len,IFS_CR_ALL,0);
for(r=0;r< 2*p->Accrows;r++)

for(c=0;c<180;c++)
{

value=acc[r+PAD][c+PAD];
ifsfpp(temp,r,c,value);

}
break;

case 2:
len[0]=2;len[1]=180+2*PAD;len[2]=2*p->Accrows+2*PAD;
temp = ifscreate("float",len,IFS_CR_ALL,0);
for(r=0;r< 2*p->Accrows+2*PAD;r++)
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for(c=0;c<180+2*PAD;c++)
{

value=acc[r][c];
ifsfpp(temp,r,c,value);

}
break;

default:
printf("Illegal pad value of %d passed to saveacc2d",

padflag);
exit(-1);

}// end switch
ifspot(temp,"savedacc2d.ifs");
ifsfree(temp,IFS_FR_ALL);

}

Utility function disc. Draw a disc on an ifs image

/*==================================================*/

/* disc */

/*==================================================*/
void disc(IFSIMG img,int r,int c,int rad,int brightness)
{

float dtheta, theta,x,y,radius,frad;
int ix,iy;
frad = rad;
for(radius = 2.0;radius <= frad;radius += 1.0)
{

dtheta = 0.5 / radius;
for(theta = 0.0; theta < (2.0) * (M_PI);theta += dtheta)
{

x = c + radius * cos (theta);
ix = x+.5;
y = r + radius * sin (theta);
iy = y+.5;
ifsipp(img,iy,ix,brightness);

// printf("r=%d c=%d theta = %f x = %d y= %d br=%d\n",r,c,theta,ix,iy,brightness);
}

}

}

/*===================================================*/

/* copyandconvert */
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/*===================================================*/
/* converts a float image to a uchar image */
/* copyandconvert(floatimage,ubyteimeage */
/* used in displaying accumulator */

void copyandconvert(float ** img1,IFSIMG img2)
{

unsigned char *uptr;
float *fptr;
int nr,nc;
int row,col,iv;
float max,min;
float vf,vi,scale;
nr = ifsdimen(img2,1);nc = ifsdimen(img2,0);
// printf("CopyConvert: nr=%d nc = %d\n",nr,nc);

// uptr=(unsigned char *)img2->ifsptr;

Find max and min of Accumulator

max = -1000000.0;min=1000000.0;
for(row=0;row < nr;row++)

for(col = 0;col < nc;col++)
{

if(img1[row][col] > max) max = img1[row][col];
if(img1[row][col] < min) min = img1[row][col];

}
scale=255.0/(max-min);
for(row=0;row < nr;row++)

for(col = 0;col < nc;col++)
{

vf=img1[row][col];
if(isnan(vf))printf("copyandconvert nan %d %d \n",row,col);

vi=(vf-min) *scale;
if(vf > max / 2.0)
{

// printf("peaks at %d %d %f->%f\n",row,col,vf,vi);
disc(img2,row,col,5,vi);

}

// *uptr++ = vi;
}

// printf("writing test image to foo.ifs\n");
ifspot(img2,"foo.ifs");

now that all the points have been rescaled, mark the biggest with discs

// uptr=(unsigned char *)img2->ifsptr;
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// for(row=0;row < nr;row++)
// for(col = 0;col < nc;col++)
// {
// iv=*uptr++;
// iv=ifsigp(img2,row,col);
// if(iv > 128)
// {
// printf("iv=%d Drawing disc at %d %d\n",iv,row,col);
// disc(img2,row,col,5,iv);
// }
// }

}

C.29 Reconstruct and Display the Original Image

//
// Houghinvsub.c
//
//
// Created by Wesley Snyder on 5/24/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

Compatible with version 2.0 of SLDS

/* ============================Houghinvsub=============================*/
/* */
/* program to read an output from a hough transform and drawlines */
/* in an image */
/* usage: Houghinvsub(Houghimg, outimg) */
/* note: by convention, Houghimg normally has 180 columns, */
/* (one column per degree) */
/* Parameters: d theta, the angle in degrees per column value */
/* is usually 1, but this program will compute it, just in case */
/* the input does not have 180 columns */
/* it will still assume the angles range from 0 to 180 degrees */
/* anr will be p->Accrows. */
/* p->tempacc is a FLOAT, and must be vidscaled before conferting */
/* outimg for display */

int Houghinvsub(float **Houghin,IFSIMG outimg,float threshold,struct param *p)
{
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int nr,nc;
int icase;
int len[3];
double rho,theta,dtheta,st,ct;
double x,y,max;
int iy,ix,i;
int irho,itheta;
float v,vin;
int anr,anc;
float min,mostneg;
int mostnegtheta,mostnegrho,lastrho,lasttheta;
anr= p->Accrows;
anc = 180;
dtheta = M_PI / anc;
nr = ifsdimen(outimg,1); nc = ifsdimen(outimg,0);

First, find the most negative point in the accumulator and remember it.

lastrho = 361;
for(i=0;i < p->numpeaks;i++)
{

mostneg = 0.0;
for (irho = -anr;irho < anr;irho++)for(itheta=0; itheta < anc;itheta++)
{

v=Houghin[irho+anr+PAD][itheta+PAD];
if(v < mostneg )
{

mostneg = Houghin[irho+anr+PAD][itheta+PAD];
mostnegrho = irho;
mostnegtheta = itheta;

}
}
printf("%d %d\n",mostnegrho,mostnegtheta);
p->peak[i] = mostneg;p->ipeakrho[i]=mostnegrho;p->ipeaktheta[i] = mostnegtheta;
Houghin[mostnegrho+anr+PAD][mostnegtheta+PAD] *= -1.0; // unmark this point

}
for(i=0;i < p->numpeaks;i++)

Houghin[p->ipeakrho[i] + anr +PAD][p->ipeaktheta[i]+PAD] *= -1.0;

// printf("Houghinvsub: strongest response is at rho,theta = (%d %d) = (%d %d)\n",mostnegrho,mostnegtheta,mostnegrho+anr+PAD,mostnegtheta+PAD);
//l now loop over the list of peaks drawing lines when needed
for (i=0;i < p->numpeaks;i++)
{

//irho is coordinates in the accumulator
// so irho is always positive. must convert to find rho
irho = p->ipeakrho[i];itheta = p->ipeaktheta[i];
if(irho == 0) rho = irho + drand48()/1000.0; else

rho = irho;
theta = itheta * dtheta;
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st = sin(theta); ct = cos(theta);
vin=Houghin[irho+anr+PAD][itheta+PAD];

if(vin <0.0)
{

// printf("Houghinvsub:%d %d %f\n",irho,itheta,vin);fflush(stdout);
if(fabs(st)<= 0.001)
{

for(iy=0;iy<nr;iy++)
{

if(vin == mostneg)
ifsfpp(p->tempacc,iy,irho,-mostneg * 2.0 );

else
ifsfpp(p->tempacc,iy,irho,-vin);

}
}
else if(fabs(ct) <= 0.001)
{

// printf("horizontal rho=%f irho = %d, itheta=%d (theta = %f), brightness=%f\n",rho,irho,itheta,theta,-vin);fflush(stdout);
for(ix=0;ix<nc;ix++)
{

if(vin == mostneg)
ifsfpp(p->tempacc,irho,ix,-mostneg * 2.0 );

else
ifsfpp(p->tempacc,irho,ix,-vin);

}
}
else
{

#define ISINX(x) (x>=0 && x<fnc)?1:0
#define ISINY(y) (y>=0 && y<fnr)?1:0

float x0,y0,x1,y1,alpha,length,dalpha,fnc,fnr;
int icase;
fnr = nr;fnc = nc;
// printf("\ndrawing line %d %d brightness = %f\n",irho,itheta,-vin);fflush(stdout);

// compute where the line crosses the X axis
icase = 0;
if((ISINX((rho/ct))) && (ISINY((rho/st))) ) icase=icase | 1;
else

if((ISINX((rho/ct))) && (ISINX((rho-nr * st)/ct))) icase=icase | 2;
else

if((ISINX((rho/ct))) && (ISINX((rho-nc * ct)/st))) icase=icase | 4;
else

if((ISINY((rho/st))) && (ISINX((rho-nr * st)/ct))) icase=icase | 8;
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else
if((ISINY((rho/st))) && (ISINY((rho-nc * ct)/st))) icase=icase | 16;
else

if((ISINX(((rho- nr * st)/ct))) && (ISINY((rho-nc * ct)/st))) icase = icase |32;

switch(icase)
{

case 1:/* printf("case 1:Line crosses x=0 and y=0\n");*/
x0=0;y0=rho/st;y1=0;x1=rho/ct;
break;

case 2: /*printf("case 2:Line crosses y=0 and y=nr\n");*/
y0=0;x0=rho/ct;y1=nr;x1=(rho-nr * st)/ct;
break;

case 4: /*printf("case 3:Line crosses y=0 and x=nc\n");*/
y0=0;x0=rho/ct;y1=nr;x1=(rho-nr * st)/ct;
break;

case 8: /*printf("case 4:Line crosses x=0 and y=nr\n");*/
x0=0;y0=rho/st;y1=nr;x1=(rho-nr * st)/ct;
break;

case 16: /*printf("case 5:Line crosses x=0 and x=nc\n");*/
x0=0;y0=rho/st;x1=nc;y1=(rho - nc * ct)/st;
break;

case 32: /*printf("case 6:Line crosses x=nc and y=nr\n");*/
y0=nr;x0 = (rho - nr * st)/ct;x1=nc;y1=(rho-nc * ct)/st;
break;

default:printf("invalid icase value of %d ",icase);
printf("rho=%f, st=%f ct = %f\n",rho,st,ct);
exit(-1);
break;

}

// compute where the line crosses the y axis

// printf("line from x=%f y=%f to x=%f y=%f\n, brightness=%f",x0,y0,x1,y1,-vin);fflush(stdout);
//l the followoing code calculates all the points along a line which is
//l specified by its end points. If $x_0 and x_1, x \in \Re^n$ are the vector endpoints of
//l a line in an n-dimensional space, any point $x$ on that line between the endpoints statisfies
//l $x=\alpha x_0 + (1- \alpha x_1$
length = sqrt((x0 - x1)*(x0-x1) + (y0-y1) * (y0-y1));
dalpha = 1.0/length;
for(alpha=dalpha;alpha < (1.0-dalpha);alpha += dalpha)
{

x=alpha * x0 + (1.0-alpha) * x1;
y=alpha * y0 + (1.0-alpha) * y1;
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iy=y+0.5;ix = x+0.5;
if(iy<0 ) iy=0;
if(ix<0 ) ix=0;
if(iy>nr-1 ) iy=nr-1;
if(ix>nc-1 ) ix=nc-1;
if(isnan(y)) printf("Ynan");

if(vin == mostneg)
ifsfpp(p->tempacc,iy,ix,-mostneg * 2.0 );

else
ifsfpp(p->tempacc,iy,ix,-vin);

}

}
}

}
ifsvidscale(p->tempacc,outimg,&max,&min,0);
// printf("Houghinvsub:vidscale returned %f %f \n",max,min);

}
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